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ABSTRACT

An effective method to render realistic metallic surface in realtime application is proposed. The proposed method perturbs
the normal vectors on the metallic surface to represent small scratches. General approach to the normal vector perturbation
is to use bump map or normal map. However, the bumps generated with those methods do not show plausible reflectance
when the surface is modeled with a microfacet-based anisotropic BRDF. Because the microfacet-based anisotropic BRDFs
are generally employed in order to express metallic surface, the limitation of the simple normal mapping or other normal
vector perturbation techniques make it difficult to render realistic metallic object with various scratches. The proposed method
employs not only normal perturbation but also deformation of the microfacet distribution function (MDF) that determines the
reflectance properties on the surface. The MDF deformation enables more realistic rendering of metallic surface. The proposed
method can be easily implemented with GPU programs, and works well in realtime environments.
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1 INTRODUCTION
In this paper, we propose a procedural method that
efficiently renders plausible metallic surfaces as shown
in Fig.1. Anisotropic reflectance models have been
widely employed to represent the metallic surface.
However, realistic representation of small scratches
shown in Fig.1 were not main concern of those
methods.

Torrance and Sparrow proposed microfacet-based
rendering model where the surface to be rendered was
assumed as a collection of very small facets[12]. Each
facet has its own orientation and reflects like a mirror.
The reflectance property of this surface model is
determined by microfacet distribution function(MDF).

Many researchers improved the microfacet-based
rendering model to represent various materials. Meth-
ods that can control the roughness of the surface
were introduced[4, 3], and those methods were also
improved by Cook and Torrence[5].

A smooth metallic surface reflects the environ-
ments like a mirror. However, the most metal objects
have brushed scratches or random scratches. Theses
scratches make the reflectance on an actual metallic
surface different from that on the perfect mirror
surface. The peculiar reflectance on metallic surface
is determined by the direction of the scratches, and
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Figure 1: Realtime rendering with proposed method.

in most cases, has anisotropic appearance. There
have been various techniques for representing the
anisotropic reflectance[8, 14, 11].

Ashikhmin and Shirley proposed an anisotropic re-
flection model with intuitive control parameters[1, 2].
Their model is successfully utilized to express the sur-
face with brushed scratches.

Wang et al. proposed a method that approximates the
measured BRDF(bidirectional reflectance distribution
function) with multiple spherical lobes[13]. Although
this method is capable of reproduce various materials
including metallic surface, it has a serious disadvantage
in that expensive measured BRDF is required. More-
over, it is still impossible to accurately render small
scratches and light scattering with camera close up to
the surface.
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Although there have been many approaches to repre-
sentation of metallic surface [15], relatively little atten-
tion has been given to the representation of the small
scratches on the surface and the reflectance disturbance
caused by the scratches. In most cases, only the re-
flectance anisotropy caused by the scratches was mod-
eled. An efficient and accurate computation of spec-
ular reflection has been also introduced for realtime
applications[9]. However, it cannot be applied to nor-
mal mapped surface because the method is based on
vertex geometry.

In this paper, we propose a procedural method
that does not require any measured data. The pro-
posed method efficiently and plausibly renders the
small scratches and its light scattering on anisotropic
reflectance surfaces.

2 REALISTIC METAL RENDERING
In this section, a procedural approach to metallic sur-
face rendering is proposed. The proposed method is
based on microfacet model, and the small scratches on
the surface are represented with normal vector pertur-
bation. In order to increase the realism, we also deform
the MDF according to the perturbation of the normal
vector.

2.1 MDF for Anisotropic Reflectance
The reflectance property of microfacet-based surface
model is determined by the microfacet distribution
function(MDF) D(ωh) which gives the probability that
a microfacet is oriented to the direction ωh. Ashikhmin
et al. proposed an anisotropic reflectance model with
the following MDF:

D(ωh) =

√
(ex +1)(ey +1)

2π
(ωh ·n)ex cos2 φ+ey sin2 φ (1)

, where n is the normal vector at the point to be
rendered. The actual parameter ωh in the MDF is the
half way vector between the incident light direction
and outgoing viewing direction. ex and ey are param-
eters that control the anisotropy of the reflection, and
φ is the azimuthal angle. ωh is a unit vector which is
sufficiently represented with only two components as
(ωh.x,ωh.y,

√
1−ωh.x2 −ωh.y2). Therefore,the MDF

is also defined in 2D space as shown in Fig.2.
Fig.2 shows an example of anisotropic MDF using

Eq.1 with different ex and ey. As shown in Fig.2,
the incoming light energy is scattered differently in
x(tangent) and y(binormal) axes of tangent space. Such
anisotropic reflectance is appropriate for metal render-
ing. In this paper, we assume that metallic surfaces re-
flect light energy according to the anisotropic model de-
scribed in Eq.1

Fig.3 shows the rendering results by changing the pa-
rameters ex and ey of Eq.1. As shown in the figure, the

Figure 2: MDF in 2D space

(a) ex,ey : 20,20 (b) ex,ey : 200,10 (c) ex,ey : 10,200
Figure 3: Surfaces rendered with Eq.1: (a) isotropic,
(b)&(c) anisotropic reflectance.

anisotropic reflectance on metallic surface can be easily
controlled. However, this method is not capable of cap-
turing the small scratches and the light scattering in de-
tails when the camera is moved close to the surface. A
simple approach to this problem is to perturb the normal
vectors on the surface, but the perturbed normal vectors
on anisotropic reflection surface may introduce another
problem. The limitation of simple normal perturbation
is described in the next subsection.

2.2 Limitation of Normal Perturbation
There have been continuous efforts to represent higher
geometric complexity with simple mesh by perturbing
the normal vectors[10, 6, 7]. Bump mapping is well
known in graphics literature, normal mapping is an im-
proved method which does not compute normal vectors
during the rendering phase[10].

In this paper, we are interested in representing the
light scattering by the small scratches on the anisotropic
reflection surface. In order to represent the scratches we
employed the well-known normal map approach. Fig.4
shows the scratch maps (essentially normal maps), and
the expected rendering results. The scratch maps are
seamless textures and procedurally generated.

Heidrich and Seidel applied Blinn-Phong shading to
the normal mapped geometry[6]. Their method is suc-
cessful only when the reflection is isotropic. However,
the normal mapping on anisotropic reflection surface,
unfortunately, cannot reproduce the original anisotropic
reflectance on the distorted surface. Other normal per-
turbation methods such as displacement mapping also
suffer from the same problem. Fig.5 shows the un-
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Figure 4: Scratch maps and expected rendering results:
(top row) scratch maps and (bottom row) expected re-
sults.

(a) original surface (b) normal mapped surface
Figure 5: Normal vector perturbation on an anisotropic
reflection surface: (a) original surface and (b) normal
mapped surface.

satisfactory rendering results when the simple normal
mapping is applied to an anisotropic reflection surface
with MDF function shown in Eq.1. As shown in the
figure, the anisotropic reflectance on the original sur-
face (a) is not preserved in the normal mapped surface
(b). The reflectance on the area where normal vectors
are perturbed is rather isotropic. Moreover we can ob-
serve some artifacts that specular reflection is severely
distorted at the left lower region.

The problem shown in Fig.5 is because the normal
mapping or other normal vector perturbation methods
only change the normal vector n. However, the MDF
D(ωh) is dependent not only on n but also on ωh. In
Eq.1, the only argument was ωh because the normal
vector is constant in tangent space. However, the nor-
mal vector should be another argument when normal
perturbation is applied. Let us denote the perturbed
normal vector as ñ. The MDF can then be rewritten
as follows:

Figure 6: MDF with perturbed normal vectors: (top
row) perturbation with isotropic MDF and (bottom row)
perturbation with anisotropic MDF.

D(ωh, ñ) =

√
(ex +1)(ey +1)

2π
(ωh · ñ)ex cos2 φ+ey sin2 φ (2)

Heidrich and Seidel computed the dot product of half
way vector and the perturbed normal vector to calcu-
late the specular reflection on the normal mapped sur-
face. Eq.2 also computes the dot product. However,
this method does not work well for anisotropic reflec-
tion surface. Fig.6 shows the MDF computed with Eq.2
and perturbed normal vectors. The cross mark in the
figure indicates the perturbed normal. The top row of
Fig.6 shows isotropic MDF when the normal vector is
perturbed. As shown in the figure, Eq.2 produces rea-
sonable deformed MDF for the isotropic MDF. How-
ever, the simple normal perturbation is not successful
with anisotropic MDFs. The bottom row of fig.6 shows
the results when we employed an anisotropic MDF. The
results show that simple normal perturbation approach
is hopelessly unsuccessful to preserve the original re-
flection property.

2.3 MDF Deformation
In order to overcome the limitation of the simple
normal mapping on anisotropic reflection surface, the
MDF should be properly deformed with the original
anisotropic property maintained. Fig.7 shows the MDF
deformation concept. Fig.7 (a) shows an example of
anisotropic MDF, and (c) shows the deformed MDF
in accordance with the normal vector perturbation
amount of (∆x,∆y) in tangent space. Let us denote
the deformed MDF as D′(ωh). We can easily derive
D′(ωh) with the deformation concept shown in Fig.7
(b). A certain point p in the domain of the original
MDF D(ωh) must move to another location p′ in the
domain of the deformed MDF D′(ωh). The direction
and magnitude of the movement are determined by
the movement from the center of the original MDF
space (C) to that of the deformed MDF space (C′). The
movement of the center is in fact the perturbation of the
normal vector, and can be denoted as (∆x,∆y). Let us
denote the transformation that move a point from p to
p′ in accordance with the normal perturbation (∆x,∆y)
as T (p,∆x,∆y). The transformation T (p,∆x,∆y)
can be easily derived with R, the intersection of the
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(a) original MDF (b) deformation (c) deformed MDF
Figure 7: MDF deformation concept and corresponding
points.

Figure 8: MDF deformation examples: (top row) linear
interpolation results and (bottom row) smooth interpo-
lation results.

circumference of the MDF space and the ray from the
center through the point p.

The simple approach shown in Fig.7 move the point
p in the same direction with the center movement, and
the magnitude of the movement is linearly interpolated.
Therefore, the transformation can be expressed as fol-
lows:

T (p,∆x,∆y) = p+
| ~Rp|
| ~RC|

(∆x,∆y) (3)

Although the transformation shown in Eq.3 deforms
the MDF in accordance with the normal vector per-
turbation, the bending of the deformed anisotropic re-
flectance is excessive at the moved center as shown in
Fig.7 (c). In order to obtain more smooth interpolation,
we used the following transformation:

T (p,∆x,∆y) = p+

√
| ~Rp|
| ~RC|

(∆x,∆y) (4)

Fig.8 compares the MDF deformation results with the
linear (Eq.3) and the smooth (Eq.4) interpolations. The
top row shows the linear version while the bottom row
shows the smooth version. As shown in the figure, the
smooth interpolation version looks more natural.

It is obvious that computing the deformed MDF
at each sampling point on the surface is extremely
inefficient. Explicit deformation of the MDF is
only conceptual process. In the actual rendering
process, we never compute D′(ωh). Only the original
MDF D(ωh) is used with the inverse transformation
T −1(p′,∆x,∆y). In other words, we conceptually

employ D′(ωh) for the normal mapped surface, but
actually use D(T −1(ωh,∆x,∆y)) which has the
equivalent value.

The inverse transformation of Eq.4 can be easily ob-
tained as follows:

T −1(p′,∆x,∆y) = p′−

√
| ~Rp′|
| ~RC′|

(∆x,∆y) (5)

Now we can simply calculate D(T −1(ωh,∆x,∆y))
to compute the MDF at the point where the normal
vector is perturbed with (∆x,∆y). Because ∆x and ∆y
are the x and y components of the perturbed normal
vector, D(T −1(ωh,∆x,∆y)) can be also rewritten as
D(T −1(ωh, ñ)).

It should be noted that the MDF with the inverse
transformation, i.e., D(T −1(ωh, ñ)), still remain in the
original MDF space. The normal vector is always
(0,0,1) in tangent space. Therefore, the dot product of
any vector v and the normal vector n (i.e., v ·n) is sim-
ply the z component of the vector, v.z, and the actual
MDF we used is as follows:

D′(ωh, ñ) = (6)

D(T −1(ωh, ñ),n) =
√

(ex+1)(ey+1)
2π

T −1(ωh, ñ).zε

,where the exponent ε is ex cos2 φ + ey sin2
φ .

Fig.9 shows the effect of the MDF deformation
by comparing the specular reflections on the illusory
bumps. The bumpy illusion on the surface shown
in Fig.9 (a) is generated only with normal mapping
method while the result shown in Fig.9 (b) is generated
with MDF deformation techniques. The original
surface has anisotropic reflection property. However,
as shown in the figure, the original MDF does not
reproduce the anisotropic reflectance on the bumps.
Even worse, the shapes of the specular reflection areas
are weirdly distorted on some bumps. The deformed
MDF removes such disadvantages as shown in Fig.9
(b). The anisotropic reflectance is well preserved on
each illusory bump, and no weird shapes are found.

2.4 Scratch Map Generation
As mentioned earlier, we represent the natural metallic
appearance by engraving small scratches on the surface.
Those scratches are expressed with perturbed normal
vectors, and some example normal maps were already
shown in Fig.4.

The scratch maps can be generated with various tech-
niques, but it can be easily and efficiently created in a
procedural manner. In order to devise a scratch map
generation method, we employed engraving a hemi-
sphere as a basic operation. The normal vectors on the
engraved hemispherical surface can be easily computed
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(a) Normal mapped surface without MDF deformation

(b) Normal mapped surface with deformed MDF
Figure 9: Effect of MDF deformation on anisotropic
reflection surface: normal mapping (a) without MDF
deformation and (b) with additional MDF deformation
applied.

(a) basic pit (b) moved pit

(c) random direction (d) directional tendency
Figure 10: Concept of scratch map generation

in tangent space. Fig.10 (a) shows the basic scratch tex-
ture with one engraved hemisphere. The center of the
hemisphere can freely move within the texture space.
We made our texture seamless as shown in Fig.10 (b).
We can also scale the hemisphere and stretch in any di-
rection, and arbitrarily increase the number of engraved
pits. The depth of the engraved scratch can be also ar-
bitrarily changed. Fig.10 (c) and (d) show the scratch
maps generated by stretching the engraved pits in ran-
dom direction and in a certain range of directions re-
spectively.

Tech Gouraud Aniso N-Map MDF
Cost 1 1.28 1.44 1.46

Figure 11: Rendering performance of the proposed
method compared with other realtime methods.

3 EXPERIMENTS

The techniques proposed in this paper was implemented
with OpenGL shading language, and the computing
environments were Mac OS X operating system with
2.26 GHz Intel core 2 CPU, 2 G DDR3 RAM and
NVIDIA 256M VRAM GeForce 9400M. Fig.11 is the
performance analysis of the proposed method com-
pared with previous traditional approaches. The label
’Aniso’ means Ashikhmin-Shirley anisotropic reflec-
tion model, ’N-map’ represents normal mapping, and
’MDF’ indicates the proposed MDF deformation tech-
niques. The computational cost of Gouraud shading
is taken as a unit cost, and other rendering techniques
were compared with the unit cost. As shown in the fig-
ure, the proposed method with deformed MDF is just
slightly more expensive than usual normal mapping (la-
beled as N-Map in the figure) which works very well in
realtime environments.

Fig.12 compares the light scattering on normal
mapped anisotropic reflection surface. Fig.12 (a)
shows the rendering results where normal mapping is
applied without deforming the MDF while (b) shows
results rendered with additional MDF deformation.
The normal map image in the right bottom corner is
the scratch map applied. As shown in the figure, the
scratches represented by simple normal mapping do
not plausibly scatter the light. However, the results
with the proposed method in (b) show realistic light
scattering along the rim of the specular reflection area.

Fig.13 shows the effect of the MDF deformation
when environments are mapped on the surface. The
reflection on the surface is modeled with Ashikhmin
and Shirley BRDF model. The left column of the
Fig.13 shows the result without the environment map-
ping while the right column shows the rendering results
with environment mapping. The first row in the fig-
ure shows the original anisotropic reflection surface of
Ashikhmin and Shirley’s model with the scratch map
texture in the right bottom corner. The middle row
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(a) normal mapping (b) MDF deformation
Figure 12: Comparison of light scattering on (a) simple normal mapped surface and (b) normal mapped surface
with additional MDF deformation.

shows the results only with the simple normal mapping,
and the bottom row shows the result when the proposed
MDF deformation is additionally applied. As shown in
the figure, the additional MDF deformation increases
the rendering quality, and reproduces the light scatter-
ing by the scratches.

Although, in this paper, we employed Ashikhmin
and Shirley BRDF for modeling the anisotropic re-
flection surface, the proposed method works with any
anisotropic reflection surface. For example, our method
works better with Ward BRDF model. The Ward BRDF
is also an anisotropic reflection model[14].

Fig.14 shows the effect of the proposed method
when the surface is model with Ward anisotropic
BRDF. The reflection on the surface is modeled with
Ward anisotropic BRDF model. The left column of
the Fig.14 shows the result without the environments
mapping while the right column shows the rendering

results with environments mapping. The first row in
the figure shows the original anisotropic reflection
surface of Ward BRDF model. The middle row shows
the results only with the simple normal mapping, and
the bottom row shows the results when the proposed
MDF deformation is additionally applied. As shown in
the figure, the simple normal mapping on Ward BRDF
surface does not provide plausible light scattering. In
fact, the effect of the perturbed normal vector can be
hardly observed without environment mapping. Only
when the proposed method is applied, we can obtain
plausible light scattering on the scratched surface as
shown in the bottom row.

Fig.15 shows the close-up comparison of light scat-
tering effects of simple normal mapping and the pro-
posed method. The results shown in (a) and (b) were
rendered with Ward BRDF for anisotropic reflection on
the surface while Ashikhmin and Shirley BRDF model
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(a) Anisotropic reflection (Ashikhmin-Shirley model) (b) Anisotropic reflection with environments

(c) Normal mapping (d) Normal mapping with environments

(e) MDF deformation (f) MDF deformation with environments
Figure 13: The effect of the propose method on Ashikhmin and Shirley model: (left column) no environment map-
ping, (right column) environment mapping, (top row) original anisotropic reflection surface, (b) normal mapping,
and (c) normal mapping with MDF deformation.
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(a) Anisotropic reflection (Ward model) (b) Anisotropic reflection with environments

(c) Normal mapping (d) Normal mapping with environments

(e) MDF deformation (f) MDF deformation with environments
Figure 14: The effect of the propose method on Ward’s model: (left column) no environment mapping, (right
column) environment mapping, (top row) original anisotropic reflection surface, (b) normal mapping, and (c)
normal mapping with MDF deformation.
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(a) Normal mapping on Ward BRDF surface (b) MDF deformation on the Ward surface

(c) Normal mapping on Ashikhmin-Shirley BRDF surface (d) MDF deformation on the Ashikhmin-Shirley surface
Figure 15: Close-up comparison of light scattering: (a) simple normal mapping on a surface with Ward anisotropic
reflection model, (b) additional MDF deformation applied on the Ward model, (c) simple normal mapping on
Ashikhmin-Shirley BRDF surface, and (d) MDF deformation effect on the Ashikhmin-Shirley surface.

is employed for those shown in (c) and (d). Fig.15 (a)
and (c) show the results only with the normal map-
ping while (b) and (d) are results generated with the
proposed MDF deformation method. As shown in the
figure, normal mapping with deformed MDF shows su-
perior rendering quality to the simple normal mapping
approach.

4 CONCLUSION
In this paper, we proposed an effective and efficient
method that improves the normal mapping to be suc-
cessfully applied to anisotropic reflection surfaces. The
proposed method is appropriate for rendering metal-
lic surfaces with small scratches in realtime. We have

shown in this paper that the simple normal mapping or
other normal perturbation techniques cannot be applied
to anisotropic reflection surfaces. In order to enable
normal perturbation to better illusory bumps on sur-
face, we introduced MDF deformation concept. The
experimental results show that the proposed method
achieves far better rendering quality than simple nor-
mal mapping method does. Moreover, the computa-
tional cost additionally required for MDF deformation
is small enough for realtime environments. The only
difference between the proposed method and the tradi-
tional anisotropic BRDF models is that ωh given to the
MDF is adjusted. Therefore, the proposed method is
easily implemented as GPU program and works well in
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realtime environments. The proposed method can be
successfully utilized in games or virtual reality systems
for rendering high-quality metallic surfaces.
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