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ABSTRACT

As the computing power of processors is being
drastically improved, the sizes of image data for
various applications are also increasing. One of the
most basic operations on image data is to identify
objects within the image, and the connected com-
ponent labeling (CCL) is the most frequently used
strategy for this problem. However, CCL cannot
be easily implemented in a parallel fashion because
the connected pixels can be found basically only
by graph traversal. In this paper, we propose a
GPU-based efficient algorithm for object identifi-
cation in large-scale images and the performance
of the proposed method is compared with that of
the most commonly used method implemented with
OpenCV libraries. The method was implemented
and tested on computing environments with com-
modity CPUs and GPUs. The experimental results
show that the proposed method outperforms the ref-
erence method when the pixel density is below 0.7.
Object identification in image data is the fundamen-
tal operation and rapid computation is highly re-
quested as the sizes of the currently available im-
age data rapidly increase. The experimental re-
sults show the proposed method can be a good solu-
tion to the object identification in large-scale image
data.
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1 INTRODUCTION

As the computing power of processors is be-
ing drastically improved, the sizes of image
data for various applications are also increas-
ing. Therefore, efficient algorithms for manip-

ulating the large-scale image data are required.
One of the most basic operations on image data
is to identify objects within the image, and
the connected component labeling (CCL) is the
most frequently used strategy for this problem.

Various image processing techniques can be
easily implemented in parallel fashion, and
GPU parallelism has been successfully ex-
ploited in this field. However, CCL cannot be
easily implemented with parallel tasks because
the connected pixels are represented as adja-
cent nodes in a graph and the adjacency among
all the nodes can be investigated basically only
by graph traversal.

In this paper, we propose a GPU-based ef-
ficient algorithm for object identification in
large-scale images and the performance of the
proposed method is compared with that of an
OpenCV-based CCL algorithm.

2 RELATED WORK

Object identification is a fundamental problem
in image processing. In many cases, the ob-
ject identification is performed based on CCL.
The most CCL algorithms are reduced to the
traversal of adjacent nodes (pixels) along the
edges in the graph that represents the input im-
age. The traversal approaches are naturally se-
quential, and parallel implementations of typ-
ical CCL algorithms have not been very suc-
cessful [10].

Even in the early stage of computer vision re-
search, it was found that the connectivity can-
not be determined by completely parallel tasks
[7]. However, the rapid development of gen-
eral purpose graphics processing unit (GPU)
technologies made it possible for GPU-based
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parallel approaches to achieve better perfor-
mance than CPU-based traditional CCL meth-
ods [1, 9].

The basic approach to CCL is to use union-find
algorithm which can determine whether two
nodes in an undirected graph are connected or
not [8]. However, such methods based on this
approach use sequential computations. Several
methods have been proposed to exploit parallel
computing architectures [5, 9]. However, these
methods were applied to relatively small im-
ages. Some methods utilized cluster architec-
tures [4]. These methods split the data volume
and the data segments are assigned to different
computing units. Parallelism within a single
GPU, therefore, cannot be exploited in these
methods.

Label equivalence method is implemented on
GPU [6], and this method iterates to resolve
the label equivalence by finding the roots of
equivalence trees. However, this approach re-
lies on decision tables which cannot be effi-
ciently handled on GPU [10].

Block-based labeling and efficient block pro-
cessing with decision table were proposed in
[2, 3]. Block equivalence method based on
“scan mask” was proposed [10]. However, this
method also has to iterate the equivalence re-
solving until it converges to the state where no
label update is found.

3 PROPOSED METHOD

In this section, a GPU-based parallel approach
to CCL is proposed. The method is composed
of four major tasks: 1) data initialization, 2)
computation of column-wise label runs, 3) la-
bel merge of connected components. Each task
is explained in details in the following subsec-
tions.

3.1 Data Initialization

The pixels in an image can be classified into
either ‘on’ pixels and ‘off’ pixels. The ‘on’
pixels are regarded nodes in graph representa-
tion, and it is assumed that an edge exists be-
tween two nodes of which positions neighbor
each other in the image space.

The goal of CCL algorithms is to assign an
identical label for linked nodes. In order to
achieve this goal, each pixel is assigned unique
label in the initialization stage. The simplest
method is to assign sequential numbers to the
pixels. Suppose we have an image with w × h
pixels and the pixel at (x,y) is denoted as
p(x, y) where x = [1, w], y = [1, h]. The ‘on’
pixel at (x, y) is then labeled with the number
x+w(y− 1). Therefore, the labeling numbers
range from 1 to wh. All the ‘off’ pixels are
labeled to be -1.

The label map Iλ is an image composed of la-
bel of each pixel, and each label at (x, y) in the
label map are denoted by Ix,yλ . In other words,
the image with initial labels can be described
as follows:

Iλ ∈ Zw×h

idx,y = x+ w(y − 1) ∈ [1, wh]

p(x, y) = 1⇒ lx,yλ = idx,y

p(x, y) = 0⇒ lx,yλ = −1 (1)

After the initialization is done, the rest of the
algorithm is to merge the positive labels in each
connected component into a single label.

3.2 Computing Column-wise Label Runs

In order to merge labels, adjacent positive la-
bels are merged. The block of contiguous ob-
ject pixels in a column is a ‘run.’ The first
stage of label merge is to find runs. In other
words, each run is identified and labeled with
a unique number. Each column is assigned to
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Figure 1. Label runs and equivalence forest

a CUDA thread and processed in parallel fash-
ion. Therefore, we have w threads running sep-
arately.

The computation within a thread is to simply
scan pixels and change the label of the current
pixel to be that of the previously scanned pixel
if the both pixels are ‘on.’

Fig. 1 shows how the label assigned to each
pixel is updated through column-wise label run
computation described in Algorithm 1. After
the update, the each label represents the root
node in the equivalence tree it belongs to as
shown in Fig. 1

Algorithm 1: Column-wise label run
kernel vertLabel
Data: Iλ ∈ Zw×h: In, Out
begin

col = thread:[1, w]
for row: h− 1 downto 1 do

if Irow,colλ > 0 and Irow+1,col
λ > 0 then

Irow,colλ = Irow+1,col
λ

3.3 Label Merge

Once the column-wise label update is finished,
the vertical connectivity must be investigated.
Let us suppose, for simplicity, that we have
only two columns. In the previous column-
wise update, the labels are merged to the
largest value in the equivalence tree. If two
pixels in a row are connected, the equivalence
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Figure 2. Label merge with two columns

trees those pixels belong to should be merged
into a single tree. In order to achieve this, the
root node of each tree must be found and the
root node with a smaller label is relabeled to
point the other root with a larger label as shown
in Fig. 2.

Note that the labels of the connected pixels are
not directly updated. Fig. 3 shows the merge
process. As shown in Fig. 3 (a), two pixels a
and b in different equivalent trees are found to
be connected. The direct update of connected
pixels does not successfully merge the equiv-
alence trees as shown in Fig. 3 (b). The cor-
rect label merge can be done by comparing and
update of the roots of the equivalence trees as
shown in Fig. 3 (c).

In order to perform the two-column label
merge for an images with w columns, w/2
column pairs are separately merged with w/2
threads. After every two adjacent column pairs
are merged, we iterate the label merge. In
the second merge phase, as shown in Fig. 4,
we have only to consider the boundaries be-
tween the previously merged column pairs, and
the computation is reduced to half the previ-
ous one. It is easily noticed that the lgw iter-
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Algorithm 2: Label merge algorithm
host callMergeLabel
Data: Iλ ∈ Zw×h: In, Out
begin

div = 2
for i: 0 upto lgw − 1 do

merge <<h · w/div>> (div,Iλ )
div = 2 × div

kernel merge
Data: div ∈ Z: in, Iλ ∈ Zw×h: In, Out
begin

thread:[1, wh/div]
nBoundary = w/div
col = div/2 + (thread % nBoundary) × div
row = thread / nBoundary
if Irow,colλ > 0 and Irow,col+1

λ > 0 then
rootL = findRoot(row,col)
rootR = findRoot(row,col+1)
I
min(rootL,rootR)
λ = I

max(rootL,rootR)
λ

device findRoot
Data: row, col ∈ Z: In, label ∈ Z: Out
begin

if Irow,colλ < 0 then
return -1

label = w row + col
while I labelλ 6= label do

label := I labelλ

return label

ations are sufficient for finding the final label
equivalence. Let us denote the computational
cost for the first iteration to be C(1). The to-
tal computational cost for the label merge is∑lgw−1

i=0
1
2i
C(1) = O(C(1)).

Algorithm 2 shows the implementation de-
tails of our method. The label merge is im-
plemented with one host function, one ker-
nel function, and one device function. In the
host function callMergeLabel, we determine
the number of boundaries where column-pairs
are merged and call kernel function merge with
the necessary number of threads. The host
function iterates this call lgw times, and the
number of threads to be called decreases as the
iteration is repeated. In the i=th call, w · h/2i
threads are required.

Every thread executes the kernel function
merge. In the kernel function, every two pix-
els across the merge boundaries are investi-
gated in parallel fashion. If the pixels are both
‘on’, the root nodes of equivalence trees the
pixels belong to are found and compared. The
label equivalence trees are merged by relabel-
ing the root with smaller label to have the same
label with the other root. The device function
findRoot is called in this process to find the
root of the pixel currently being investigated.

After the execution of Algorithm 2, the equiv-
alence tree will be obtained. However, the fi-
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Figure 4. Label merge iteration

nal goal of CCL is to make all the pixels in a
connected component have an identical label.
This can be achieved by applying the device
function findRoot to each pixel and updating
its label to be the returned value. This process
can be easily performed in a parallel fashion
because the label updates for any nodes in the
tree do not destroy the equivalence of the nodes
in the tree.

Algorithm 3 describes the operations of rela-
beling thread. Total w · h threads separately
call findRoot for corresponding pixels and up-
date the label in order to make the connected
pixels have an identical label.

Algorithm 3: Relabeling
kernel relabel
Data: Iλ ∈ Zw×h: In, Out
begin

thread:[1, w · h]
row = thread/w, col = thread%w
Irow,colλ = findRoot(row, col)

4 EXPERIMENTAL RESULTS

The method proposed in this paper was imple-
mented on computing environments with com-
modity CPUs and GPUs. The experimental re-
sults were collected from the tests on a system
with i7-3630QM 2.4 GHz CPU and Geforce
GTX 670MX GPU.

Table 1. CCL performance comparison with random
density noise patterns (2048×2048 pixels).

2048×2048
density Grana (ms) Proposed method (ms)

0.1 22.8 6.3
0.2 30.7 7.0
0.3 46.0 7.7
0.4 51.3 8.6
0.5 47.6 10.2
0.6 43.6 15.2
0.7 35.5 26.1
0.8 28,0 40.8
0.9 20.8 64.6

In order to verify the efficiency of our method,
we compared the performance of our method
with the most commonly used method. The
reference method was proposed in [3], and im-
plemented with OpenCV libraries.

In the first experiment, the performance of each
method was measured by applying images with
random noise. The random noise was au-
tomatically generated and the density of the
noise ranges from 0.1 to 0.9. Table. 1 shows
the experimental results when 2048×2048 im-
ages with random noise are applied. The first
column represents the noise density, and the
second column shows the measured execu-
tion time of the reference method in millisec-
onds. The third column shows the execution
time of the proposed method. As shown in
the table, the reference method (denoted by
Grana) requires more execution time when the
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Table 2. CCL performance comparison with random
density noise patterns (4096×4096 pixels).

4096×4096
density Grana (ms) Proposed method (ms)

0.1 85.7 21.4
0.2 135.3 24.3
0.3 190.4 27.1
0.4 206.1 30.8
0.5 205.4 36.9
0.6 177.6 59.0
0.7 153.1 126.7
0.8 112.1 216.7
0.9 85.6 411.5

noise density is around 0.5 while the proposed
method requires more time as the density in-
creases.

Table. 2 shows the similar experimental re-
sults except that the size of the input images is
4096×4096. As shown in the table, the com-
putational cost is similarly changing in accor-
dance with the density.

Table 3. CCL performance comparison with test images
A and B with different image sizes.

Images sizes
methods 5122 10242 20482 40962

Test Image A
Grana (ms) 1.14 3.86 14.39 41.1

Proposed (ms) 0.87 2.46 7.68 26.0
Gain (%) 23.7 36.3 46.6 36.7

Test Image B
Grana (ms) 1.01 3.53 12.35 40.78

Proposed (ms) 0.83 2.35 7.21 24.03
Gain (%) 17.8 33.4 41.6 41.1

Fig. 5 (a) visualizes the experimental results
shown in Table. 1. As shown in the figure, the
computational cost of the proposed method in-
creases as the density increases. However, the
proposed method is far better until the density
is below 0.7.

Fig. 5 (b) shows the similar results. This fig-
ure visualizes the result shown in Table. 2. As
shown in the figure, the computational cost of
the proposed method increases as the density
increases. However, the proposed method is
far better until the density is below 0.7.

The CCL algorithms are not actually applied
to noise data. In order to measure the perfor-
mance of the proposed method in more feasi-
ble environments, we prepared two test images
shown in Fig. 6. There are two different test
images and the sizes of the images can be ei-
ther 5122, 10242, 20482 or 40962. Test image
A has two components, and each of them is
a long spiral curve without touching the other
component. The other test image B has many
scattered stars, and two of them are connected
with a star-shaped thin line.

Table. 3 shows the execution time required for
reference method and the proposed method ap-
plied to the test images with different sizes. In
the last row in each data set obtained by us-
ing each test image, the performance gain is
computed and shown. The performance gain is
obtained by computing the ratio of the reduced
computational cost by applying the proposed
method to the cost of the reference method.
As shown in the table, the performance gain is
more noticeable as the size of the input image
increases.

Fig. 7 visually compares the computational
costs of the reference method and our method
(lines), and the performance gain is also visu-
alized with bars. Fig. 7 (a) shows the result
when the test image A was used as input im-
age. The formance gain was the largest when
the size of the input image is 2048×2048.

Fig. 7 (b) shows the similar results when
the other test image is used. As shown in
the figure, the performance gain is again the
most noticeable when the size of the image is
2048× 2048.

5 CONCLUSION

In this paper, an efficient GPGPU implemen-
tation of connected component labeling (CCL)
was proposed. The method exploits the data
parallelism of GPUs to improve the perfor-
mance of CCL. Object identification in image
data is the fundamental operation and rapid
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Figure 6. Test images for practical labeling: (a) two
spiral curves (b) scattered stars

computation is highly requested as the sizes of
the currently available image data rapidly in-
crease. The experimental results show the pro-
posed method can be a good solution to the ob-
ject identification in large-scale image data.
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