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ABSTRACT

Silhouette information has been used to enhance artistic rendering of 3D objects. We present a new method
for progressive silhouette rendering of triangle mesh of arbitrary topology by using parameterized brush

functions in various styles.

The proposed progressive silhouette rendering framework is consist of two major steps; one is mesh simpli-
fication for silhouette feature preservation and the other is the stylized silhouette edge rendering. We also
improve the mesh simplification algorithm that can preserve silhouette and volume of arbitrary mesh for
silhouette rendering. First, for a given mesh, we can obtain progressive mesh(PM) through our proposed
mesh simplification algorithm at the preprocessing step. Then, we can render silhouette edges by various
kinds of effects progressively by performing the refinement of a given PM from a base mesh.

Results demonstrate that progressive silhouette rendering which use the progressive mesh and brush func-
tions can cause effect that a person sketches an arbitrary object gradually.

Keywords: non-photorealistic rendering, mesh simplification, progressive sketching, silhouette rendering

1 INTRODUCTION

Recent advances in three-dimensional acquisition,
simulation, and design technologies have lead to the
growing complexity of the scenes and models be-
ing rendered. In order to cope with large polygonal
meshes, mesh simplification is often used, in which a
highly detailed mesh is approximated with a smaller
number of triangles. While the simplified mesh gener-
ally isn’t an exact replica of the original mesh, a small
loss in fidelity is often considered an acceptable trade-
off for the elevated display rates, reduced storage re-
quirements, and improved processing speeds afforded
by less detailed meshes.

Among the varied goals of artistic Non-Photorealistic
Rendering (NPR) is the pursuit of perceptually effi-
cientimages. A perceptually efficient visual represen-
tation emphasizes important features and minimizes
extraneous detail and is essential for making compre-
hensible artistic images. Computer-generated 3D line
drawings borrow from centuries of artists’ techniques
and have recently received significant attention in the
NPR community.

It has been recognized that silhouettes are an impor-
tant visual cue that humans use to determine shape
and recognize objects. In the computational vision
community there is a large body of work studying
how shape information can be computed from sil-
houette data. In computer graphics, silhouette infor-
mation has been used to enhance the expressive ren-
dering of 3D objects. However, the combination of
these two techniques, mesh simplification and silhou-
ette rendering, has not been introduced yet.

In this paper, we combine mesh simplification with
silhouette rendering to render silhouette edges of a
triangle mesh progressively. We present a new sil-
houette rendering algorithm which can express sil-
houette edges according to parameterized brush func-
tions, can progressively render 3D objects in various
styles by using the progressive mesh (PM).

2 RELATED WORKS

First, we discuss related work on mesh simplification
and LOD computation methods. Then we discuss pre-



vious work on silhouette edge rendering and nonpho-
torealistic rendering.

Mesh Simplification

Level-Of-Detail (LOD) is concerned to the possibil-
ity of using different representations of a geometric
object having different levels of accuracy and com-
plexity. A number of algorithms have been pro-
posed for computing LODs in the last few years.
The goal of mesh simplification is to represent a
polygonal mesh with fewer vertices, but to keep a
good approximation of the original mesh. These
include algorithms based on vertex clustering, edge
collapses[Hoppe96], vertex removal, quadric error
metrics[Heckbert97], simplification envelopes, mem-
oryless simplification[Lindstrom98].

We present a mesh simplification algorithm to pre-
serve volume and boundary of triangle mesh and to
improve processing speed / memory efficiency by us-
ing edge collapses.

A popular method of implementing LOD is to
use a data structure known as a progressive mesh
(PM)[Hoppe96]. The progressive mesh consists of a
coarse base mesh and a set of refinement information
(sequence of vertex splits) that can be used to increase
the complexity of arbitrary mesh.

The surface simplification using quadric error metrics
method is based on the iterative contraction of edge
pairs, which also allows to join unconnected regions
of the model[Heckbert97]. The atomic operation, ver-
tex pairs contraction, may be conceived as a less gen-
eral vertex clustering operation.

As simplification proceeds, a geometric error approx-
imation is maintained at each vertex of the current
model. The error approximation is represented us-
ing quadric metrics. The main advantages of this ap-
proach are computational efficiency and generality. It
also allows the simplification of disconnected or non-
manifold meshes.

We compare our proposed algorithm with this algo-
rithm in terms of processing speed and maximum ge-
ometric errors of simplified mesh.

Nonphotorealistic Rendering

There has been extensive research for illustrating sur-
face shape using non-photorealistic rendering tech-
niques. Adopting a technique found in painting,
Gooch et al. developed a tone-based illumination
model that determined hue, as well as intensity,
from the orientation of a surface element to a light
source[Gooch98].

Silhouette edges are particularly important in the per-
ception of surface shape, and have been utilized in
surface illustration and surface visualization render-
ing. The extraction and rendering of silhouettes and
other expressive lines has been addressed by several
researchers [Salisbury94, Gooch99].

Silhouette edges can be rendered using hidden line re-

moval methods, which are typically batch processes.
There are also a number of algorithms described
for extracting silhouettes from arbitrary polygonal
models. The method proposed by Markosian et al.
is real time and works on static polyhedral mod-
els with known adjacency information[Markosian97].
They use a probabilistic method to identify silhou-
ette edges. The method proposed by Rossignac et
al. is image precision and does not need adja-
cency information[Rossignac92]. The visibility of
silhouette edges is computed using modified Ap-
pel’s hidden-line algorithm assuming the view is
generic[Appel67].

Raskar et al. describe a simple general-purpose
method to combine all three operations for any
scene composed of objects that can be scan-
converted[Raskar99]. Gooch et al. describe a hier-
archical Gauss map for quickly rejecting edges that
are not on the silhouette[ Gooch99].

Contributions

The main objective of this work is to contribute to
non-photorealistic rendering of multiresolution mod-
els. The contributions of this paper are:

e We introduce the idea of progressive silhouette
rendering algorithm in various brush styles.

e We describe a concrete mesh simplification al-
gorithm that can preserve the volume, boundary
and silhouette of arbitrary triangle mesh.

3 PROGRESSIVE SILHOUETTE RENDER-
ING ALGORITHM

Our proposed algorithms for progressive silhouette
rendering are composed of mesh simplification al-
gorithm and silhouette rendering algorithm. First,
we create a progressive mesh for silhouette rendering
which can be obtained from original mesh through
our proposed mesh simplification algorithm at the
preprocessing step. Then we progressively render sil-
houette edges in various styles for the input PM by
using parameterized brush functions. The Figure 1
shows processing flow of progressive silhouette ren-
dering system that we proposed.

3.1 Volume and Boundary Preservation

In this paper, similar to most contemporary mesh sim-
plification methods, we use the edge collapse oper-
ation to iteratively coarsen the mesh (See figure 2).
It does this by repeatedly selecting the edge with
a minimum cost, collapsing this edge, and then re-
evaluating the cost of edges affected by this edge col-
lapse. Therefore, there are following two important
processes to achieve mesh simplification.
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Figure 2: The edge collapse operation[Hoppe96]
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o The precedence decision of the edge collapse

e New vertex placement after edge collapse oper-
ation

The first step in the simplification process is to assign
costs to all edges in the mesh, which are maintained
in a priority queue. For each iteration, the edge with
the lowest cost is selected and tested for candidacy; if
the edge is not a valid candidate, it is removed from
the queue.

The second step is to place new vertex after edge
collapse operation performed. The vertex placement
scheme has a number of desirable properties; it is
volume-preserving, it attempts to minimize the ag-
gregate deviation, expressed in terms of tetrahedral
volumes, between the two surfaces in each edge col-
lapse, and it also explicitly accounts for changes made
to surface boundaries by minimizing similar integral
measures of deviation.

A two-manifold surface is a topological space where
every point has a neighborhood topologically equiv-
alent to an open disk of the two-dimensional Eu-
clidean space E2. Intuitively, two-manifolds are non-
selfintersecting, closed surfaces. One important geo-
metric characteristic of a closed surface is the amount
of volume it encloses. In order to preserve the volume
enclosed by the surface, we use the following cost
function for placing a new vertex as in [Lindstrom98].
However, we don’t use volume optimization proce-
dure similar to memoryless simplification. One of the
reasons why volume preservation is desirable is that

it keeps cascading errors to a minimum. If the ver-
tex placement were not volume-preserving, we may
inadvertently end up accumulating errors along a sin-
gle direction, for example by repeatedly inflating the
model.

Thus, volume preservation ensures that here is no bias
in the error introduced by a single edge collapses, and
that any inflation is always offset by an opposite de-
flation. We will need to compute the signed volume V'
of a tetrahedron formed by the vertex x and the three
vertices of a triangle ¢;.

We here derive a matrix form for this quantity:
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We can get the cost function for volume preservation
as the following:
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where, n; denotes the triangle, ¢ denotes the normal
vector of the triangle.

When dealing with boundary edges, we will use a
similar notation for computing the area vectors asso-
ciated with these edges.

We define a cost function for boundary preservation

as the following:
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The priority decision of edge collapse is impor-
tant process in the mesh simplification. The edge
collapse criteria to remove edge in a mesh are the
length of edge, L(e), the sum of degrees of two
end-vertices, d(v) which is derived from the degree
method[Jinger98].

We define the cost function which calculates cost that
correspond to each edge according to above criteria.
In case of we apply only the cost function L(e), the
simplified result of the mesh has equal triangles be-
ing removed edges equally. If we increase simplifi-
cation level, it becomes hard to keep volume and the
boundary characteristic of the mesh. So, we should
consider neighborhood information of edges. There-
fore, we must include information that can preserve
volume and boundary at the priority order decision of
edge collapsing.

Based on these error measures, the best edge collapse
in each iteration is the one that yields the smallest
amount of change. Formally, the edge cost F¢ is writ-
ten as

FC = )\Fvol . d(’l)) + (]. - )\)L(e)z : Fboun (l)



The parameter A provides the user with explicit con-
trol over the tradeoff between surface and boundary
fidelity. In general, A = % trends to work well.
A progressive mesh is created by starting with an
input mesh and applying a series of edge collapses.
Because a vertex split and an edge collapse are in-
verse operations, one can apply a series of edge
collapses, and then apply the corresponding vertex
splits (in reverse order) to recover the original mesh.
The data structure for the PM representation cor-
responds closely with the tuple(M°, {wvsplity, ...
,split,_1}). By using this property, the simpli-
fied mesh, which is produced by the proposed cost
function, is stored PM form as the following data
structure[Hoppe96].
struct CPMesh {

CMesh base_mesh;// base mesh M°

Array<Vsplit> vsplits;//{vsplito, ... ,vsplit,—1}

int full_nvertices;// number of vertices in M™

int full_nwedges;// number of wedges in M™

int full_nfaces;// number of faces in M™

IS

The base_mesh field stores M° using the CMesh
structure which means an abstract data structure for
any triangulated mesh. We can apply vertex split op-
erations to recover the original mesh progressively.
Figure 3 shows an example of the progressive silhou-
ette rendering result of the cow model using PM.

Figure 3: An example of progressive silhou-
ette rendering (100 faces, 300 faces, 600 faces,
2,024 faces)

3.2 Silhouette Preservation

To preserve object silhouette, we should preserve the
details of polygons with view orthogonal direction
and surface boundary of the silhouette edge normal
with view direction and refine the polygons on the sil-
houettes.

Now we describe multiresolution view sphere
structure[ Kim98]. We assume that an object is rep-
resented as set of polygons. View sphere is a Gaus-
sian sphere that maps the normal direction of poly-
gons to the point in the view sphere. Points on
the sphere (z,y,z) maps the unit direction vector
(x,y,2z). Polygons that have the direction vector
(x,y,z) are mapped into the point (z,y,2) on the
view sphere. Each point in the view sphere represents
the set of polygons that have the direction of the point
represents. Distance of two direction vectors on the
object surface is represented as distance of two points

in the sphere. Using view sphere, polygons that have
similar directions with the view are easily identified.
If view direction is given as v, visible polygons with
similar directions are located at the neighbor part of
the point v on the surface of the view sphere.

To give efficient access to the view sphere, we have
partitioned the sphere into discrete view cells. Each
cell occupies part of the view sphere. Each cell con-
tains a set of regions, which represents simplified rep-
resentation of polygons mapped into that part of the
sphere.

In the example of the silhouettes, object silhouette
parts have more detail. Conversely, parts that have
similar normal directions with view direction and
back faces have less detail.

We define a view cell that covers the view direction
as a view directional cell and view cells with orthog-
onal normal as a view orthogonal cell. Our algorithm
chooses a simplified cell for a view directional one
and uses refined cell for view orthogonal ones. We
assumed that object simplification is occurs when the
object is far enough to the viewer. So, polygons in the
view orthogonal cells form a silhouette of the object
to the view.

3.3 Silhouette Edge Rendering

The most straightforward way to find silhouette edges
is to calculate the dot product of the two face normals
that share an edge with the view vector.

The equation (2) describes the condition between face
normals Ny, No and eye vector V' for the silhouette
edge detection (See the figure4).

(N1-V)x(N2-V) <0 )

If the above condition is satisfied then the edge shared
by front face and back face is a silhouette edge. This
implies at run time we need to examine all edges of
an object.

silhouette edge
\4
Q H -~ Wi
front face back face
1 N 2

Figure 4: Silhouette Edge Detection

The proposed silhouette rendering system detects and
draws the silhouettes of a 3D triangle mesh in real
time. In addition to silhouettes, we find edges that
mark other key features of a model, such as crease
and border edges.

A crease edge is detected when the dihedral angle
between two faces is greater than a given threshold.



Border edges are those that lie on the edge of a sin-
gle polygon, or that are shared by two polygons with
different materials.

We also find silhouettes in each frame by taking the
dot products of the face normals of the two faces adja-
cent to an edge with the viewing vector, and compar-
ing the product of these two dot products with zero.
If the result of this computation is less than or equal
to zero, the edge is a silhouette edge and it is flagged
for rendering.

The proposed silhouette edge rendering system per-
forms the following steps to achieve effective render-
ing result of arbitrary polygonal mesh.

1. find all visible silhouette edges from the view-
point, i.e. boundaries between adjacent front
facing and back-facing polygons.

2. solve the partial visibility problem to render
only those parts of silhouette edges, which are
not occluded by the interior of any front facing
polygons.

3. parameterize the silhouette edge

4. define parameterized silhouette brush functions
using the distance between tangent and normal
vector.

5. render silhouette edges in various style using
parameterized brush functions.

The proposed algorithm uses the modified Appel’s al-
gorithm, and uses Half Edge data structure to improve
normal vector calculation speed for two triangles ad-
jacent to one edge. In the preprocessing step, it al-
locates memory for an edge list including an edge
flag for each edge to indicate whether it is a border,
crease, or silhouette edge. Iterate over the faces of
the model and create a unique edge list using a hash
table. The hash function for an edge is the sum of
the two vertex indices of the edge. Set border flag
for edges with only one neighboring face. For non-
deformable geometry, set crease flag for edges for
which the dihedral angle between the two neighbor-
ing faces is greater than the crease threshold. This
algorithm describes in the Algorithm 1.

The runtime algorithm for silhouette rendering de-
scribes in the Algorithm 2. First, we calculate face
normals if necessary. For deformable meshes, it de-
tects crease edges from face normals and set crease
flags. It detects silhouette edges via equation (2) and
set silhouette flags in the edge list.

Finally, it renders edges whose edge flag is set
through traversing the edge list. Silhouettes are ren-
dered using line segments, the width of which can be
adjusted according to lighting parameters, a distance
metric, or a user-defined parameter. As an object
moves away from the eye, the silhouette line width

Algorithm 1 preprocess_silhouettes
edge_list* EdgeList = new edge_list;
initialize EdgeList;
for each edge e; in EdgeList do

Te; =h(sum(e;.v1, €;.v2));

if (e; has one neighboring face f) then
set e;.flag = BORDER;

end if

A., = dihedral_angle(f1, f2);

if (A, > crease_angle (e;)) then
set e;.flag = CREASE;

end if

end for

Algorithm 2 runtime_algorithm
calculateFaceNormals(n)
detect crease edges from n
e;.flag = CREASE;
for each edge e; in EdgeList do
if (e; is silhouette edges) then
renderEdge(e;);
end if
end for

can be reduced with increasing distance.

For a given input mesh, it creates the Half Edge in-
formation to render silhouette edges by using brush
functions. The process of creating Half Edge requires
O(nlogn) time complexity since it has sorting pro-
cedure.

3.4 Stylized Silhouette Edges

Stylized rendering has been a research topic in com-
puter graphics world for a number of years. The mo-
tivation is to imitate the stylizations that artists adopt
in different media, such as pen and ink work, where,
for example, various hatching patterns are employed.
The proposed algorithm parameterizes each edges in
all silhouette edges at edge parameterization step. All
silhouette edges that are found in the previous step
are then individually processed. Each silhouette edge
is parameterized as a line so that we can offset all of
the different points on the silhouette edge. We want
to be able to this to provide a random/human sketched
look to the silhouette edge. It parameterizes two end-
vertices of each edge with regulating to each other
size. Here we can obtain effects that person seems
to sketch arbitrary 3D object randomly.

3.5 Parameterized Brush Functions

A brush function is just a function that will describe
what is going on in a particular brush in a very low



level. For example, the charcoal stroke’s brush func-
tion is just a high frequency sawtooth curve. The jus-
tification for this can be seen if one tries to draw a
charcoal-like scene on paper with a pen; one ends up
shaking the pen up and down on the paper in order to
achieve similar effects. The same applies here. With
parameterized silhouette edges, we can the parame-
terize the tangent of the edge as well as the normal of
the edge. The tangent and normal are used in conjunc-
tion with the brush fucnction as vectors offsets for the
point. The equation for this is :

q(t) = p(t) + v (1) - P'(1) + vy (t) - n(t)

where, ¢(t) denotes the brush stroke’s point at ¢, p(t)
denotes the “regular” point’s coordinates, v, (¢) de-
notes the x-value of the brush function, v, (¢) denotes
the y-value of the brush function, p’(t) and n(t) de-
note the edge’s tangent and normal at ¢ respectively.
Table 1 shows brush functions that we proposed.

Brush Brush function

Charcoal | High frequency sawtooth curves

Lazy Low frequency parabolic curves

Hand Low magnitude noise (normal, tangent)
Rough High magnitude noise (tangent)

Table 1. Brush Functions.

Each brush function that is explained in Table 1 is de-
fined to mathematical expression such as the follow-
ings:

ve(t) = t/C = dist,

(
v (t) = t/L = dist,
vp(t) = (rxdist,)/a
vp(t) = (rxdist,)/p

where, C' and L are constants, a and /3 are threshold
values, r = rand()/MAX,ang, dist, = Zpmas +
|me|

The Algorithm 3 describes the silhouette rendering
algorithm using proposed brush functions. The Cal-

Algorithm 3 RenderWithBrush
for each halfEdge ¢ do
This = CalculateDotProduct(: —origin);
Twin = CalculateDotProduct(i —twin);
if (Twin <=0 and This >=0) or (Twin >=0 and
This <=0) then
ParameterizeEdge(q);
CalculateBrushFunction(?);
DrawBrushEdge(7);
end if
end for

culateDotProduct function produce the result of dot

product of current view vector and normal vector of
triangle. If each result of the CalculateDotProduct of
two triangles that share an edge is different each other
or zero, then it performs the silhouette rendering pro-
cedure. There are 3n edges in a triangle mesh where
n denotes the number of vertices in a triangle mesh.
Therefore, the number of half edges is 6n. The time
complexity of the Algorithm 3 is O(n) after the half
edge is constructed. But, the total time complexity of
the proposed algorithm is O(n log n) since it requires
a sorting procedure.
To integrate these two different techniques, PM and
silhouette rendering, we maintain each data structures
for PM and silhouette rendering. We treat this integra-
tion problem in two steps. In the first step we apply
vertex split operation for a vertex v; in PM. Actually,
the vertex split operation returns a new edge of given
simplified mesh. Therefore we can obtain a new edge
e; of mesh. In the second step we insert this edge e; to
half edge data structure for silhouette rendering. Af-
ter this second step, we can render stylized silhouette
edges by using parameterized brush functions. So,
our algorithm requires PM and half edge data struc-
tures for achieving progressive silhouette rendering.
The following pseudo-code shows an outline of the
integration process for an arbitrary triangle mesh
m.
CPMesh  pMesh(m);
CHalfEdge hEdge(m);
for each ¢-th refinement step do

CEdge e; = pMesh.vSplit(v;);

hEdge.insert(e;);

perform the Algorithm 3;
end for

where CHalfEdge means an abstract half edge data
structure for silhouette rendering, CEdge denotes an
edge of triangle mesh and v; denotes a vertex for per-
forming vSplit operation in the i-th refinement step.

4 RESULTS

We have implemented our algorithm in C/C++,
tested our non-optimized implementation on several
datasets which is obtained from California Institute of
Technology(feline, horse model) and CMU graphics
lab(cow, bunny model). All experiments were con-
ducted on a 850 MHz Pentium III running Microsoft
Windows 2000. Our system had 512 MB of RAM and
a graphics accelerator based on the NVIDIA GeForce
256 chip.

We simplified all models using our simplification
tools (VBPSlim ); the results of simplified feline mod-
els are shown in figure 4. The most important aspects
of the progressive silhouette rendering process to an-
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