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Abstract. We present a novel FPGA-accelerated architecture for fast collision
detection among rigid bodies. This paper describes the design of the hardware
architecture for several primitive intersection testing components implemented
on a multi-FPGA Xilinx Virtex-II prototyping system. We focus on the accelera-
tion of ray-triangle intersection operation which is the one of the most important
operations in various applications such as collision detection and ray tracing.

Our implementation result is a hardware-accelerated ray-triangle intersection
engine that is capable of out-performing a 2.8 GHz Xeon processor, running a
well-known high performance software ray-triangle intersection algorithm, by
up to a factor of seventy. In addition, we demonstrate that the proposed approach
could prove to be faster than current GPU-based algorithms as well as CPU based
algorithms for ray-triangle intersection.

Keywords: Collision Detection, Graphics Hardware, Intersection Testing, Ray
Tracing.

1 Introduction

The problem of fast and reliable collision detection has been extensively studied [4].
Despite the vast literature, real-time collision detection remains one of the major bot-
tlenecks for interactive physically-based simulation and ray tracing [1][12]. One of the
challenges in the area is to develop the custom hardware for collision detection and
ray tracing. However, one major difficulty for implementing hardware is the multitude
of collision detection and ray tracing algorithms. Dozens of algorithms and data struc-
tures exist for hierarchical scene traversal and intersection computation. Though the
performance of these algorithms seems to be similar to software implementations, their
applicability to hardware implementation has not yet been thoroughly investigated.

Since collision detection is such a fundamental task, it is highly desirable to have
hardware acceleration available just like 3D graphics accelerators. Using specialized
hardware, the system’s CPU can be freed from computing collisions.

Main Results: We present a novel FPGA-accelerated architecture for fast collision
detection among rigid bodies. Our proposed custom hardware for collision detection
supports 13 intersection types among rigid bodies. In order to evaluate the proposed
hardware architecture, we have performed the VHDL implementation for various inter-
section computations among collision primitives.
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We demonstrate the effectiveness of our hardware architecture for collision queries in
three scenarios: (a) ray-triangle intersection computation with 260 thousands of static
triangles, (b) the same computation with dynamic triangles and (c) dynamic sphere-
sphere intersection tesing. The performance of our FPGA-based hardware varies be-
tween 30 and 60 msec, depending on the complexity of the scene and the types of
collision primitives. In order to evaluate our hardware performance for large triangle
meshes, we also present our hardware to different benchmark models. For our compara-
tive study we also analyze three popular ray-triangle intersection algorithms to estimate
on the size of hardware resource. More details are given in Section 4. As compared to
prior methods, our hardware-accelerated system offers the following advantages:

– Direct applicability to collision objects with dynamically changing topologies since
geometric transformation can be done in our proposed hardware;

– Sufficient memory in our board to buffer the ray-intersection input and output data
and significant reduction in the number of data transmission;

– Up to an order of magnitude faster runtime performance over prior techniques for
ray-triangle intersection testing;

– Interactive collision query computation on massively large triangulated models.

The rest of the paper is organized as follows. We briefly survey previous work on
collision detection in Section 2. Section 3 describes the proposed hardware architecture
for accelerating collision detection. We present our hardware implementation of ray-
triangle intersection in Section 4. Finally, we analyze our implementation and compare
its performance with prior methods in Section 5.

2 Related Work

The problems of collision detection and distance computation are well studied in the
literature. We refer the readers to recent surveys [4]. In this section, we give a brief
overview of related work on the collision detection, programmable GPU-based ap-
proaches, and the custom hardware for fast collision detection.

Collision Detection: Collision detection is one of the most studied problems in com-
puter graphics. Bounding volume hierarchies (BVHs) are commonly used for collision
detection and separation distance computation. Most collision detection schemes in-
volve updates to bounding volumes, pairwise bounding volume tests, and pairwise fea-
ture tests between possibly-intersecting objects. Complex models or scenes are often
organized into BVHs such as sphere trees [7], OBB-trees [5], AABB-trees, and k-DOP-
trees [8]. Projection of bounding boxes extents on the coordinate axes is the basis of the
sweep-and-prune technique [4]. However, these methods incur overhead for each time
interval tested, spent updating bounding volumes and collision pruning data structures,
regardless of the occurrence or frequency of collisions during the time interval.

Programmable GPU: With the new programmable GPU, tasks which are different
from the traditional polygon rendering can explore their parallel programmability. The
GPU can now be used as a general purpose SIMD processor, and, following this idea,
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a lot of existing algorithms have been recently migrated to the GPU to solve prob-
lems as global illumination, linear algebra, image processing, and multigrid solvers in a
fast way. Recently, GPU-based ray tracing approaches have been introduced [11]. Ray
tracing was also mapped to rasterization hardware using programmable pipelines [11].
However, according to [12] it seems that an implementation on the GPU cannot gain a
significant speed-up over a pure CPU-based implementation. This is probably because
the GPU is a streaming architecture. Another disadvantage which they share with GPUs
is the limited memory. Out-of-core solutions are in general not an alternative due to the
high bandwidth needed.

Custom Hardware: The need for custom graphics hardware arise with the demand for
interactive physically simulations and real-time rendering systems. The AR350 proces-
sor is a commercial product developed by Advanced Rendering Technologies for ac-
celerating ray tracing [3]. Schmittler et al. proposed hardware architecture (SaarCOR)
for real time ray tracing and implemented using an FPGA [14]. The performance of the
SaarCOR depends on a number of scene-space-subdivisions.

The first publications of work on dedicated hardware for collision detection was
presented in [15]. They focused on a space-efficient implementation of the algorithms,
while we aim at maximum performance for various types of collision queries in this
paper. In addition, they presented only a functional simulation, while we present a full
VHDL implementation on an FPGA chip.

3 Hardware Architecture

In this section, we give an overview of hardware architecture for accelerating the col-
lision detection. Our hardware architecture is based on a modular pipeline of collision
detection. The proposed architecture includes three key parts such as input registers, the
collision detection engine, and the update engine in the Fig. 1.

3.1 Input Registers and Transformer

Our proposed hardware has three inputs which are counter register, primary data regis-
ter file, and secondary data register file. The transformer provides the geometric trans-
formation functions for secondary objects to improve the performance. The counter
register contains the number of primary objects and the number of secondary objects.
The geometries of the primary objects are stored in the primary data register file. The
secondary data register file also holds geometries of the secondary objects for colli-
sion queries. In our research, we suppose that the primary objects P change for each
time. On the other hand, the secondary objects S does not change their geometries in
local coordinate system. Therefore, the S just can be applied the geometric transforma-
tions such as translation and rotation. For instance, the triangulated models are S and
rays are P to perform the intersection computations in ray tracing applications. More
specifically, S denotes as S = {(T1, ..., Tn)| n ≥ 1}, where T is a triangle defined
by three vertices Vj ∈ R3, j ∈ {0, 1, 2}. The P is the set of rays which contain their
origins O and directions D. When testing the intersection between the primary objects
and secondary objects, we perform the following processing steps. First, we upload the
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Fig. 1. The proposed hardware architecture

secondary objects to on-board memory at once through direct memory access (DMA)
controller. Second, we transfer the primary objects to on-chip memory in the collision
detection engine (CDE). To do this step, we use the register files which are packet data
of the primary object to reduce the feeding time for the CDE. Finally, we invoke the ray-
triangle intersection module in the CDE to compute the intersection between primary
objects and secondary objects.

One of the primary benefits of the transformer in our architecture is to reduce the
number of re-transmission for the secondary objects from main memory to on-board
memory. If certain objects from the geometry buffer have to be reused, they can be
transformed at the transformer without re-transmission from main memory. Therefore,
we can reduce the bus bottleneck since we reduce the number of re-transmission. The
bus width from secondary register file to CDE is 288 (= 9 × 32) bits. We can transfer
288 bits to the collision detection engine in every clock. The ultimate goal of our work
is applying our results to physically-based simulation. So, we use single precision for
representing a floating point to provide more accurate results.

3.2 Collision Detection Engine

The collision detection engine (CDE) is a modular hardware component for perform-
ing the collision computations between P and S. The CDE consists of the acceleration
structures and primitive intersection testing components. As already discussed earlier
in Section 2, a wide variety of acceleration schemes have been proposed for collision
detection over the last two decades. For example, there are octrees, general BSP-trees,
axis-aligned BSP-trees (kd-trees), uniform, non-uniform and hierarchical grids, BVHs,
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and several hybrids of several of these methods. In our hardware architecture, we can
adapt hierarchical acceleration structures for collision culling as shown in Fig. 1. How-
ever, we could not implement the acceleration structure due to the FPGA resource limit.
But if we use the hierarchical acceleration structure, we can search the index or the
smallest T-value much faster.

The primitive intersection testing component performs several operations for inter-
section computations among collision primitives. In order to provide various operations
for intersection computations, we classified 13 types of intersection queries according
to the primary and secondary collision primitives: ray-triangle, OBB-OBB, triangle-
AABB, triangle-OBB, sphere-sphere, triangle-sphere, ray-cylinder, triangle-cylinder,
cylinder-cylinder, OBB-cylinder, OBB-plane, ray-sphere, and sphere-OBB intersection
testing. We have implemented hardware-based collision pipelines to verify these inter-
section types. The proposed hardware contains the 13 collision pipes, and more pipes
can be available if hardware resources are sufficient. The CDE selects one collision
pipe which is ready to working among 13 collision pipes by the function selector sig-
nal. Each pipe can be triggered in parallel by the ready signal of each pipe. However, it
is difficult to execute each pipeline in parallel due to limitation of the input bus width
and routing problems. Thus, our proposed hardware reads input packet from on-board
memory and stores in the register file which contains two or more elements.

We use a pipelined technique in which multiple instructions are overlapped in ex-
ecution. This technique is used for real hardware implementation in order to improve
performance by increasing instruction throughput, as opposed to decreasing the ex-
ecution time of an individual instruction. There are four outputs which are collision
flag (F-value), collision position (CP), index, and separation distance or penetration
depth (T-value). In order to get these outputs, the CDE performs the intersection testing
between P and S. If a collision occurs, CDE will store output values for CP, index,
T-value and F-value. The CP denotes a collision position of the object pair and index
is the triangle (T ) index of the triangulated mesh. The T-value denotes the penetration
depth between two objects and F-value is set true. Otherwise, CP and index have invalid
value, T-value is the separation distance between two objects and F-value is set false.

3.3 Update Engine

We can simplify routing data lines and make memory controller efficient by coupling
buffers such as F-index buffer and two stencil-T buffers as shown in Fig. 1. We com-
pare old T-value from stencil-T buffer0 (or 1) with new T-value from CDE and update
smaller T-value from stencil-T buffer1 (or 0) of the two values within one clock. We
do not transfer T-values from the stencil-T buffer to CPU in order to find the small-
est or the largest T, which makes it possible to reduce transmission time. Stencil value
in the stencil-T buffer is used for masking some regions of the F-index buffer to save
searching time for the index of the collision object.

We use single precision floating point of IEEE standard 754 for representing each
element of the vertex or vector and T-value in order to compare with the speed of the
CPU arithmetic. One of the main reasons that we use single precision floating point is
to provide more accurate results in physically-based simulation systems. So, we create
many floating point arithmetic logics with CoreGen library supported by Xilinx tool
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Fig. 2. The acceleration board with 64bits/66MHz PCI interface. On the board, there are Xilinx
V2P20 for PCI controller, Xilinx V2P70 for memory and the collision detection logic. This board
also includes two 1 GB DDR memories with 288 bit input bus, seven 2 MB SRAMs with 224 bit
output bus.

ISE. We use two types of memories on the board. One is uploading-purpose memory
which is consists of two DDR SDRAMs. The other is storing-purpose memory which
is consist of six SRAMs to store output results (see Fig. 2). Block RAMs on the FPGA
is used for buffering the P . Primary register file matches the block RAM on the FPGA.

In our ray-triangle intersection computation, the primary object data P contains an
origin point O and a direction vector D of a ray. Total 256 rays can be transferred from
main memory to block RAMs on the FPGA at a time. Each secondary object data in S
is a triangle T which contains three vertices. When the number of the rays is more than
256, the rays are divided by a packet which contains 256 rays and packets are transferred
one by one at each step. We define this step as processing collision detection between a
packet of primary object and all secondary objects. The bigger size of the block RAMs
is, the better performance of the CDE is. While FPGAs usually have several small
memories, the advantage of using such a memory is that the several memory blocks
can be accessed in parallel. Each triangle of the secondary object is represented using
288 (9×32)-bit data. Nearly 55 million triangles can be transferred from main memory
to two DDR SDRAMs on the board through the DMA controller. So, we designed the
large bus width of the secondary object data to eliminate input bottleneck of the CDE.
Therefore, we are able to read one triangle data from the queue of the DDR SDRAM in
each hardware clock.

4 Analysis of Ray-Triangle Intersection Algorithms

In this section we present the analysis results for ray-triangle intersection algorithms
in terms of hardware resources. We have investigated three major ray-triangle inter-
section algorithms, the first one is Badouel’s algorithm [2], the second one is Möller
and Trumbore’s algorithm [9], and the last one is the algorithm using Plücker coordi-
nates [10]. We review Möller and Trumbore’s algorithm since this algorithm requires
smaller hardware resources in terms of hardware implementation than others. We will
skip Badouel’s algorithm and the algorithm using Plücker coordinates and refer to the
original publications instead [2][10].
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Möller-Trumbore’s Algorithm: The algorithm proposed by Möller and Trumbore
does not test for intersection with the triangle’s embedding plane and therefore does
not require the plane equation parameters [9]. This is a big advantage mainly in terms
of memory consumption – especially on the GPU and the custom hardware – and exe-
cution performance. The algorithm goes as follows:

1. In a series of transformations the triangle is first translated into the origin and then
transformed to a right-angled unit triangle in the y − z plane, with the ray direction
aligned with x. This can be expressed by a linear equation

⎛
⎝

t
u
v

⎞
⎠ =

1
P · E1

⎛
⎝

Q · E2
P · T
Q · D

⎞
⎠ (1)

where E1 = V1 −V0, E2 = V2 −V0, T = O −V0, P = D ×E2 and Q = T ×E1.
2. This linear equation can now be solved to find the barycentric coordinates of the

intersection point (u, v) and its distance t from the ray origin.

We compared these algorithms in terms of the latency, the number of I/O and hardware
resources as shown in Table 1 and 2. We could not use Plücker test which contains too
many multipliers and inputs relative to Möller’s algorithm and Badouel’s algorithm.
Preprocessing of Plücker reduces the number of inputs and the latency of the hardware
pipeline. However, it still needs more storage than others. Möller’s algorithm is similar
to Badouel’s one in terms of the latency of the hardware pipeline, the number of I/O,
and hardware resources as shown in Table 1 and 2. Möller’s algorithm has been more
efficient than Badouel’s algorithm in view of the processing speed and usage of storage
[9]. Therefore, we choose the Möller’s algorithm for VHDL implementation for real
circuit on the FPGA.

Table 1. Comparison of ray-triangle intersection algorithms in terms of the number of inputs, the
number of outputs and latency for hardware implementation

Algorithms The number of inputs The number of outputs Latency

Badouel’s 9 6 16
Möller’s 9 6 10
Plücker’s 15 6 17

Table 2. Analysis of the hardware resources for ray-triangle intersection algorithms

Hardware Components Badouel’s Möller’s Plücker’s

Multiplier 27 27 54
Divider 2 1 1
Adder 13 12 31

Subtractor 23 15 17
Comparator 6 8 3

AND 3 2 2
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5 Implementation and Analysis

In this section we describe the implementation of our collision detection hardware and
highlight its application to perform ray-triangle intersection testing for massive trian-
gulated meshes.

5.1 Implementation

We have implemented ray-triangle collision detection engine with VHDL and simu-
lated it with ModelSim by Mentor Graphics. The ray-triangle intersection algorithm
which we used is Möller’s algorithm. In order to evaluate our hardware architecture, we
created this algorithm as circuits on an FPGA. In our experiments, the primary input is
a dynamic ray and triangulated terrain which contains 259,572 triangles for secondary
objects in Fig. 3(a). The origin of the ray moves on the flight path shown as a red
curve and direction of the ray changes randomly in every frame in Fig. 3(b). We have
evaluated our hardware on a PC running Windows XP operating system with an Intel
Xeon 2.8GHz CPU, 2GB memory and an NVIDIA GeoForce 7800GT GPU. We used
OpenGL as graphics API and Cg language for implementing the fragment programs
[13]. We can classify three configurations of collision detections according to the prop-
erties of collision primitives. A static object is the object which the topology is not
changed in the scene. On the other hand, a dynamic object is an object which the topol-
ogy is changed in the scene for each frame.

Static Objects vs. Static Objects: In this scenario, the performance depends on the
number of primary objects due to limitation of the block RAMs on an FPGA. Thus,
we choose the objects which have small number of objects in our architecture. If the
number of the objects is larger than the size of the block RAM, then data transmission
from main memory to block RAM occurs in two or more times.

Static Objects vs. Dynamic Objects: We choose dynamic objects as the secondary
object. Since the transformation is performed in our hardware, we do not need to

(a) (b)

Fig. 3. Our test terrain model: (a) terrain: 259,572 triangles (b) a ray (blue line) is shot on the
triangulated terrain in arbitrary direction for each frame
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retransfer data of dynamic objects except that objects are disappeared or generated
newly. Position and orientation of the dynamic objects can be transformed by trans-
former in Fig. 3. We expect the performance is comparable to above case.

Dynamic Objects vs. Dynamic Objects: Our hardware architecture only supports
transformation function for secondary objects. In this scenario, transmission time is
defined by the number of the primary objects which are transformed in the CPU. Thus,
the performance depends on the number of the primary objects and the CPU processing
speed. We will evaluate performance of our proposed architecture in each case com-
paring with that of CPU and GPU. The proposed hardware checks 259,572 ray-triangle
collision tests per frame, which takes 31 milliseconds including the ray data transmis-
sion time, while it takes 2,100 milliseconds for CPU based software implementation as
shown in Fig. 4(a). Our hardware was about 70 times faster than CPU-based ray-triangle
implementation. To compare with GPU-based approach, we have implemented the ef-
ficient ray-triangle intersection tests on the GPU using the Nvidia Cg shading language
[6][13]. The proposed hardware is four times faster than the GPU-based ray-triangle
intersection approach. For dynamically moving vertices of the triangles on the terrain,
the proposed hardware was 30 times faster than the CPU-based approach as shown in
Fig. 4(b).

We also performed another experiment for dynamic sphere-sphere collision detec-
tion. In this scenario, one thousand of sphere move dynamically in every frame. The
input data contains a center point and a radius of the sphere which is represented four
32-bit floating points. In collision detection among dynamically moving spheres, our
hardware is 1.4 times faster than CPU based implementation since sphere-sphere in-
tersection algorithm consists very simple operations. In order to evaluate our hardware
performance for large triangle meshes, we also have applied our hardware to differ-
ent benchmarks as shown in Table 3. We measured the average computation time of
ray-triangle intersection for each benchmark model. Our approach provides significant
performance improvement for huge triangle meshes.

Fig. 6 shows snapshots of intersection trajectories for our benchmark models.
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Fig. 5. Dynamic sphere-sphere collision testing: (a) snapshot of collision testing, (b) the compar-
ison result according to the number of objects

Table 3. Performance comparison for ray-triangle intersection

Model Vertices Triangles CPU-based Ours
(msec) (msec)

Bunny 35,947 69,451 488 4
Venus 50,002 100,002 695 5
Rabbit 67,039 134,073 925 8
Dragon 437,645 871,414 5.887 47
Happy buddha 543,644 1,085,634 7,290 53
Blade 882,954 1,765,388 11,220 65

5.2 Analysis and Limitations

Our hardware provides good performance of collision detection for large triangulated
meshes. The overall benefit of our approach is due to two reasons:

– Data reusability: We exploit the transformer in the proposed hardware to avoid
the transmission bottleneck due to the transformation in the CPU. As a result, we
have observed 30 - 70 times improvement in ray-triangle intersection computation
over prior methods based on CPU and GPU.

– Runtime performance: We use the high-speed processing power of the proposed
hardware. We also utilize instruction pipelining to improve the throughput of the
collision detection engine. Moreover, our current hardware implementation
involves no hierarchy computation or update.

Based on these two reasons, we obtain considerable speedups over prior methods. More-
over, we are able to perform various collision queries at almost interactive frame rates.

Limitations: plusOur approach has a few limitations. Our hardware architecture in-
cludes the component of acceleration structures, such as kd-tree, grids and BVHs in
Fig. 3. However, we could not implement this component due to the hardware resource
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Fig. 6. Intersection trajectories of bunny, venus and happy buddha models. (The blue lines are
random rays and the red triangles are intersected triangles with rays.)

limit. So, our current implementation does not support hierarchical collision detection.
However, if traversal of acceleration structures is performed in CPU, we can solve this
problem easily.

6 Conclusion

We present the dedicated hardware architecture to perform collision queries. We eval-
uate the hardware architecture for ray-triangle and sphere-sphere collision detection
under the three configurations.

We have used our hardware to perform different collision queries (ray-triangle inter-
section, sphere-sphere intersection) in complex and dynamically moving models. The
result is a hardware-accelerated ray-triangle intersection engine that is capable of out-
performing a 2.8 GHz Xeon processor, running a well-known high performance soft-
ware ray-triangle intersection algorithm, by up to a factor of seventy. In addition, we
demonstrate that the proposed approach could prove to be faster than current GPU-
based algorithms as well as CPU based algorithms for ray-triangle intersection.
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