A GEOMETRIC COMPRESSION ALGORITHM FOR
MASSIVE TERRAIN DATA USING DELAUNAY
TRIANGULATION *

Sung-Soo Kim, Yang-Soo Kim, Mi-Gyung Cho, Hwan-Gue Cho

Graphics Application Laboratory,
Department of Computer Science,
Pusan National University,
Kum-Jung-Ku, Pusan 609-735, Korea.

E-mail: {sskim, yskim, mgcho, hgcho}@pearl.cs.pusan.ac.kr

ABSTRACT

In this paper we introduce a new compression technique for a large triangulated terrain using
Delaunay triangulation. Our compression technique decomposes a triangulated mesh into two
parts. One is a point set whose connecting structure is defined implicitly by Delaunay edges. The
other is the set of edges which cannot be recovered by the implicit Delaunay triangulation rule.
Thus we only need to keep the whole vertex coordinates and a few edges which is not included
in the Delaunay edges. For the vertex coordinate, we apply “entropy coding” given by [Costa98],
and we store only the edges not included in Delaunay triangulation.

In experiments, we prepared several TIN data set with various resolutions, which were gen-
erated by five typical algorithms for terrain simplification. Those algorithms include progressive
meshing, vertex decimation and incremental greedy insertion etc. We found that most of terrain
triangulations are quite similar(= nearly 93%) to the plane-projected Delaunay triangular mesh.
This experimental work shows that more than 93% edges of a common terrain data is included in
Delaunay triangulation. By exploiting this result, we can compress the common terrain data by
1.2 bits per vertex. Another advantage of our Delaunay compression approach is that we can re-
construct the original terrain structure locally, since we can easily determine if an edge is included

in Delaunay edges by observing only a few local surrounding vertices.

Keywords: Data Compression, Delaunay Triangulation, Terrain Modeling

1 INTRODUCTION

One of the main problems in GIS is to visualize
and analyze the terrain surface, e.g., finding the
geodesic shortest path, hidden surface removal,
presenting a selectively refinement view and con-
structing a virtual environment. One of objec-
tives in handling GIS data is how to handle the
terrain data easily and efficiently since a common
terrain file is very large. We also need a special
compression technique for this GIS terrain data
file since the transmitting terrain data is crucial
in the Web-based GIS. Terrain models are usually
specified with triangle-based surface meshes, and

*This work was supported by KOREA Research
Foundation(1998.)

nowadays a key issue is how to store, access and
visualize possibly in real time hundreds of thou-
sands of faces[HSurvey97].

Much of the current research has been fo-
cused on managing these large datasets. Two well
known approaches are surface simplification and
geometry compression. The former allows an ob-
ject to be viewed at different details depending
on viewing distance from the object. These tech-
niques reduce the number of vertices in the mesh
by altering the model’s connectivity and by the
possibly adjusting the position of the remaining
vertices to minimize the error produced by the
simplification[HSurvey97]. The latter is a general
space-time trade-off, and offers advantages at ev-
ery level of the memory /interconnect hierarchy:

less storage space is needed on disk, less trans-
mission time to transmit over the network.

A terrain is the graph of a continuous function
that assigns every point on the plane to an eleva-
tion. For rendering purposes it is convenient to
model a terrain as a collection of disjoint trian-
gles. Such a representation is called a Triangu-
lated Irregular Network(TIN), in geographic infor-
mation systems and a polyhedral terrain in com-
putational geometry.

In this paper we focus on space efficiency
for multiresolution model. We present a new
compressed representation of triangulated terrain
model using Delaunay triangulation.

2 RELATED WORKS
2.1 Terrain Simplification Algorithms

The goal of terrain simplification—or more gen-
erally: surface simplification— is to represent a
surface with fewer vertices, but to keep a good
approximation of the original surface. The advan-
tages of working with a simplified version include
reduced storage space, shorter times to construct
the data structures, and faster visualization of the
surfaces.

Vertex Decimation

Schrider has proposed the vertex decimation to
simplify complex triangulations[Schroe92]. This
method takes a triangulated surface as input, typ-
ically a manifold with boundary. The algorithm
makes multiple passes over the data until the de-
sired error is achieved. On each pass, all vertices
that are not on a boundary that has error below
the threshold are deleted, and their surrounding
polygons are retriangulated. The error at a ver-
tex is the distance from the point to the approx-
imating plane of the surrounding vertices. This
method is fast, but it does not assure bounded
approximation [HSurvey97].

Progressive Meshes

Hoppe introduced a new multiresolution model
called Progressive Meshes(PM)[HH96]. The pro-
gressive meshes are built from a simplification al-
gorithm that is based on a single operation, the
edge collapse. The inverse of edge collapse op-
eration is the wvertexr split operation. The PM
scheme is composed of a coarse low resolution
mesh My, together with the sequence of refine-
ment records obtained by inverting the simplifi-
cation steps operated to build M}, from the input
mesh M. These refinement records allow the in-
cremental refinement of M} into a mesh M; at
whatever precision, with interactive times. Dur-

ing simplification, the selection of the edges to be
collapsed is done via a priority queue, ordered by
the energy cost improvement estimated for each
edge collapse[HSurvey97].

Simplification Using Quadric Error Metrics

The surface simplification using quadric error
metrics method is based on the iterative con-
traction of edge pairs, which also allows to
join unconnected regions of the model. The
atomic operation, vertex pairs contraction, may
be conceived as a less general vertex clustering
operation[Heck97]. As simplification proceeds,
a geometric error approximation is maintained
at each vertex of the current model. The error
approximation is represented using quadric met-
rics, extending a previous approach[Garland95].
The main advantages of this approach are the
computational efficiency and generality. It al-
lows the simplification of disconnected or non-
manifold meshes.

Greedy Insertion Method

Heckbert has proposed the greedy insertion algo-
rithm to refine a coarse triangulation[Garland95].
This work has explored fast and accurate vari-
ations of the greedy insertion algorithm. This
method uses two optimizations of the most basic
greedy insertion algorithm. First, they exploited
the locality of mesh changes and only recalcu-
lated the errors at input points for which the ap-
proximation changed. Second, they used a heap
to permit the point of highest error to be found
more quickly. SCAPE software was implemented
by this algorithm.

2.2 Geometric Compression

In order to store, transmit and give a multireso-
lution TIN files, we need to keep them in a com-
pressed form. So far, there are a few compression
techniques for planar graph model, especially for
planar triangulated graph structure. In this sec-
tion, we review previous compression techniques.

General Mesh Compression
Compression for planar graph and 3D geometry
was introduced by [Turan84, Kenn95]. Turan has
shown that a planar graph can be encoded in at
most 12n bits, where n is the number of vertices
in the graph[Turan84]. Keeler introduced space-
efficient encoding schemes for planar graphs and
maps[Kenn95]. He has proved that an arbitrary
planar graph G with m edges can be encoded in
mlogl2 + O(1) bits.

Deering has proposed a generalized triangle
mesh representation[Deer95]. First, 3D geome-
try is represented as a generalized triangle mesh,

a data structure that encodes both position and
connectivity of the geometry efficiently. Next, the
positions, normals, and colors are quantized to
less than 16 bits/vertex. Chow has also described
some heuristic algorithms which generate codes
where each vertex of a typical mesh appears only
1.3 times on the average[Mchow97].

IBM Mesh Compression

Extending Deering’s main idea, Taubin and
Rossignac gave an efficient method for com-
pressing geometry connectivity[Taubin96]. Their
method decomposes a mesh into a set of span-
ning tree of triangles and vertices. These trees
are encoded separately so that both connectiv-
ity and vertex position are compressed easily.
They were able to reduce connectivity informa-
tion to 2 bits per triangle. However, one disad-
vantage of this method is that the decompression
stage is complicated by large memory require-
ments and is not amenable to cost-effective hard-
ware implementations[Mchow97].

Costa's Mesh Compression

Costa has announced a new triangle mesh com-
pression method by exploiting the triangle march-
ing structure[Costa98]. He uses a more sophisti-
cated prediction scheme based on local surface
properties, requiring only approximately 9 bits
per vertex for typical inputs. Mesh connectiv-
ity encoding is performed using active list which
is a list of vertex degrees in a special order. To
compress the vertex coordinate data, they use the
“parallelogram” rule for geometric prediction.
The main disadvantage is that compressed models
do not support selective refinement as necessary
for view-dependent visualization.

3 DELAUNAY RULE-BASED COM-
PRESSION

In this section, we propose a new geometric data
compression algorithm for TIN data using De-
launay triangulation. The basic idea of our al-
gorithm is that we encode the TIN topology
with a “rule”, so TIN is decomposed into two
parts; a rule(=Delaunay Triangulation) and ele-
mentary data(= vertex coordinates and some dif-
ferent edges).

3.1 Implicit Delaunay Triangulation

A Delaunay triangulation is desirable for approx-
imation because of its general property that most
of its triangles are nearly equiangular. Note that
this generates a unique triangulation for a given

set of points P. And the faces of DT'(P) are called
Delaunay triangles. Various algorithms to con-
struct DT are invented because of its many ap-
plications. Prevailed algorithms are divide-and-
conquer and incremental method. Both can con-
struct DT in O(nlogn) time when the number of
points is n.

Most of current terrain data format is ASCII-
based which contains a large amount of redun-
dancy. It contains vertex coordinates and connec-
tivity informations(triangles). Connectivity en-
coding techniques attempt to reduce the redun-
dancy inherent to many popular representations
of triangular meshes.

In this paper we restrict input geometric mod-
els as triangulated terrain model, especially, 2.5D
terrain data. Our basic assumption is that most
terrain connectivity of typical TINs is quite sim-
ilar to the corresponding Delaunay triangulation
of the given point set.

A terrain model G is denoted by T;(V, E;),
where V is a vertex set, E; is an edge set and
T; is triangulation. Let an original triangulation
be T,(V, E,) and Delaunay triangulation of G be
T4(V,Eg4). Then, T, and Ty are two different tri-
angulations of the same point set P. We define
exclusive-OR operation ‘@’ for two triangulations
which computes the intersecting graph, AT, be-
tween T, (V, E,) and T,(V, E4). This operation is
represented in the following:

T, ® Ty = AT(V,AE),where (1)

AE = {(vi,v)) | (vi,v;) ¢ (B, N Ea)}
V ={v; | (v;,v;) € AE}

An Implicit Delaunay Triangulation,
IDT(V,AE), is composed of vertex coordinate
set V', and different edge set AE. Our compres-
sion algorithm exploits Lemma 1.

Lemma 1 Let T, and Ty be two different trian-
gulations of the original terrain.(T, : original tri-
angulation, Ty : 2D Delaunay triangulation). Let
a new graph AT be defined AT(V,AE) = T,®T,.
Then we can reconstruct the original triangula-
tion T, by the following equation.

T, =T;® AT (2)

Proof : Assume that T, and T, is an original
triangulation and the corresponding 2D Delau-
nay triangulation, respectively. By definition, we
know that T, ® Ty = AT(V,AE). So by associa-
tive property of exclusive-OR, we apply &7y’ to
the both sides of T, = Ty & AT.

To@TdEBTd:AT@Td.

Since Ty & Ty = ¢, so we have

T, ®p=AT®T,
Finally, we got T, = AT & Tj. m]
Consequently, IDT should contain vertices and a
small amount of connectivity(AT"). The 2D DT

is contained implicitly after model is encoded.
Fig. 1 shows one example of AT resulted from

T, Tq
(a) To (b) T4
<
Se)l
.
o _ | °
[]
[]
°
AT

(c) AT(V, AE)

Figure 1: An example of AT(V,AE): (a)
T, (original terrain), (b) Ty(delaunay trian-
gulation), (¢) T, ® Ty = AT(V, AE) : solid
and dashed edges are included in AE.

equation (1). The algorithm for computing AT
goes follows:

Algorithm ComputeDeltaT
Input : T,(V, E,) - Original triangulated terrain.
Output : AT(V,AE) =T, 3Ty

1. Create new TMesh Ty(V, Ey);
Create new EdgeList AT
Ty := ¢; AT := ¢;
Ty := Delaunay2D(T,.VertexList);
/* perform Delaunay triangulation of 7, */
2. Sort e; € E, lexicographically
and put them in List L,;
Sort e; € Ey lexicographically
and put them in List Lg;
3. Compare two Lists L, and Ly
by head merging algorithm;
if (e; € E4 and e; ¢ E,)
then AT := AT Ue;;
if (e; ¢ E4 and e; € E,)
then AT := AT Uey;

In above algorithm “TMesh” means an abstract
data structure for any triangulated mesh and

“EdgeList” means an edge list in triangulation.
Let us consider the time complexity of above al-
gorithm. Suppose that |V| = n, |E4| = 3n. De-
launay2D function can be done in ©(nlogn) by
divide and conquer method or simply O(nlogn)
in average if we use a randomized incremental
algorithm. Then in order to compute the differ-
ence between E, and E;, we make L, and Ly
in O(nlogn) time. And we compare L, to Ly by
merging them, which can be done in O(n). So the
total time complexity of the algorithm for com-
puting AT is O(nlogn).

3.2 Delaunay Compression Algorithm
Our compression algorithm is stated as follows:

Algorithm Delaunay Encoding
Input : Original Triangulation T5,(V, E,)
Output : IDT.(V,, E.)

1. Delaunay2D(7,.VertexList);
Compute AT(V,AE) =T, ® Ty;

3. V. := Compress V using Costa’s
method;

4. E. := Compress AF using IBM
algorithm;

5. return IDT.(V,,E.);

Vertex coordinates of an original terrain model
are compressed by Costa’s vertex coordinate
compression method[Costa98] and edge informa-
tion is compressed by IBM algorithm[Taubin96].
Costa’s compression method encodes the vertex
coordinate in 9 bits per vertex on average and
IBM algorithm encodes the edge information in
4 bits per vertex on average. Finally, com-
pressed terrain model should contain the com-
pressed point set(V.) and the compressed edge
information(E,) instead of all mesh connectiv-
ity. Fig. 2 shows an overview of our compression
scheme.

IDT.(V,, E,)

Figure 2: Overview of our compression
scheme ; T, denotes an original triangu-
lated terrain and IDT.(V., E.) denotes a
compressed model representation.

3.3 Delaunay Decompression Algorithm

In this section we introduce a new subgraph
structure for decompressing IDT.(V., E.). Let
us define a Smallest Containing Subgraph(SCS)
SCS(e;) as a smallest subgraph containing e;. A
Smallest Containing Subgraph is a shortest cy-
cle in Ty which surrounds the edge e(x,y) inter-
sected edge e in 7,. Fig. 3 shows a smallest
containing subgraph containing e(z,y). In this
paper, we should compute the smallest contain-
ing subgraph to decompress a IDT. Fig. 4 ex-

Figure 3: A Smallest Containing Subgraph,
SCS, for edge e(z,y)

plains the decompression procedure. First, we
find the SCS for all edges in AE. Second, De-
launay edges(dashed edges) in SC'S are removed.
Finally, the removed Delaunay edges in SC'S are
substituted with edges of AE. For each edge e in
AE, the number of intersected edges of Delaunay
triangulation T4(V, E4) is expected to be a con-
stant.

Our experiment shows that it is less than 2,
about 1.12. See Table 2. So the number of ver-
tices and edges in SC'S(e(x,y)) is also a constant
on average. Therefore we can find SCS(e(x,y))
in constant time by breadth-first searching from
z and y. The V. and E. are decompressed by
Costa’s and IBM algorithm before decompression
procedure is applied. The algorithm for decom-
pressing IDT is given as follows:

Algorithm Delaunay Decoding
Input : IDT(V,AE) : Implicit DT.
Output : T,(V, E,) : original triangulated terrain.

Create new TMesh T,;
T, := Delaunay2D(V);
for each edge g € AE {

E, = FindSCS(g);

for each edge h € Ey {

if (h intersects g) then discard h;
else T, := T, ® h;
}

T, == ToUg;

Figure 4: T; and SCS; dashed edges are in-
cluded in Delaunay triangulation, and they
are stored in IDT(V,AE).

}

Experimentally, we found that the average num-
ber of edges in smallest containing subgraph is
about 1.12 as shown in Table 2. So the time
complexity for decompressing is O(p - Co - n) =
0(0.112 - n), where p is ratio of the number of
different edges between DT and TIN and Cj is
|SCS(e(z,y))|, if DT is given.

4 EXPERIMENTS
4.1 Similarity between DT and real TIN

Our experiment shows the similarity between
original triangulation and 2D Delaunay triangula-
tion. We define the degree of similarity as follows:

S=1-=,(0<S<) (3)

where n is the total number of edges in T, and
m is the number of edges in AT. We used five
general data sets for the experiments. Fig. 5 vi-
sualizes two terrains. We tested our algorithm on
data sets based on 1:250,000 scale digital eleva-
tion models obtained from U.S. Geological Sur-
vey. The Crater Lake (Oregon, USA) data was
used by [Garland95] for their experiments with
the refinement algorithm in the SCAPE sys-
tem. We measured the similarity of multiresolu-
tion models according to simplification methods,
such as progressive meshing, vertex decimation,
quadric error metrics, greedy insertion and de-
gree method. Table 1 shows that similarity
ratio is quite high, namely more than 93%.

(a) Ashby (99468 faces) (b) Craterlake (99472 faces)

Figure 5: Two sample terrains

Faces Data
Ashby Crater Ozark Ntc Spokane

100% | 0.94 093 094 0.98 0.98
90% | 094 094 097 098 0.93
70% | 093 094 095 0.96 0.92
50% | 093 093 093 0.95 0.92
30% | 093 094 091 094 0.91
10% | 093 095 0.89 0.93 0.89

Faces Data
Ashby Crater Ozark Ntc

Spokane

100% | 0.94 093 094 0.98 0.98
90% | 0.91 0.9 091 094 0.94
70% | 0.85 085 0.85 0.88 0.89
50% 0.8 0.8 0.81 0.82 0.83
30% | 0.76 0.75 0.77 0.77 0.77

10% | 0.72 0.71 0.73 0.72 0.72

(d) Similarity ratio to Vertez Decimation.

Faces Data
Ashby Crater Ozark Ntc

Spokane

100% | 0.94 093 094 0.98 0.98
90% | 094 093 094 097 0.98
0% | 092 092 092 094 095
50% | 092 091 091 0.95 0.94
30% | 0.89 0.89 0.89 0.9 0.90
10% | 0.86 0.85 0.85 0.86 0.86

(a) Similarity ratio to Progressive Meshes.

Faces Data

Ashby Crater Ozark Ntc Spokane

100% | 094 0.93 094 0.98 0.98
90% | 0.88 0.92 092 0.96 0.96
0% | 087 0.89 0.88 091 0.92
50% | 0.87 0.8 0.86 0.87 0.87
30% | 0.86 0.85 0.85 0.85 0.84

10% | 0.85 084 0.83 0.84 0.83

(b) Similarity ratio to Quadric Error
Metrics(QSLIM).

Faces Data

Ashby Crater Ozark Ntc Spokane

100% | 0.94 093 094 0.98 0.98
90% | 094 093 095 098 0.98
70% | 095 094 096 0.99 0.99
50% | 096 0.95 096 0.99 0.99
30% | 098 0.96 0.98 0.99 0.99
10% | 0.99 098 0.99 0.99 0.99

(c) Similarity ratio to Greedy Insertion(SCAPE).

(e) Similarity ratio to Degree Method.

Table 1. The similarity between DT and several
TINs generated by the recently proposed algo-
rithms.

Fig. 6 shows the similarity between Delaunay tri-
angulation and Greedy(SCAPE) triangulation.
Note that the similarity increases with smaller
number of vertices(=coarser terrain model).

Greedy Insertion

——pshby

098 |~ Crater
Ozark
. Nec
094 [— ./,./ |~ Spokene

Simllarit:

=
99468(crigin) 89526(30%) 69630(T0%) 49726(50% 29842(30%) 994T(10%)
Number of faces

Figure 6: Similarity of Greedy Insertion to DT

Info. Data
Ashby Crater Ozark Ntc Spokane
|AE| 8837 10847 8748 2699 2798
|[E(Ty)] | 149467 149471 149467 149549 149609
F;= 7932 10020 7819 2586 2582
F;=2 786 687 807 112 201
F;=3 106 127 112 1 15
Fi=4 13 12 10 0 0
F;=5 0 1 0 0 0
AVG 1.12 1.09 1.12 1.04 1.08

Table 2. The number of intersections between
AEFE and Ty. F; denotes the total number of edges
having i-times intersection in AE. AVG is the
average number of intersections.

Table 2 shows the statistics of edge intersection
between AE and Ty. This result shows that
most edges in AE intersects to edges in Ty only
once. We can compute SCS(e(z,y)) in constant
time, since |SC'S(e(z,y))| is a constant size. The
time complexity of decompressing consists of the
time for constructing Delaunay triangulation and
|AE| - Ce, where C, is the time for finding SCS
for each edge e in AE. Therefore, total time
for decompressing depends on the performance
of Delaunay triangulation only. It takes a few
seconds to reconstruct Delaunay triangulation

4.2 Expected Performance of Delaunay
Compression

Now we give an expected performance of our De-
launay compression for triangulated terrain data.
By conducting several experiments we found that
about more than 90% of edges are common in
DT and real TIN data. Let m denote the number
of edges in a triangulation T,(V, E,) of a terrain
data. Suppose that about (1 — p) - m edges of
T,(V, E,) are common in DT | where p is ratio
of the number of different edges between DT and
TIN. Then we need to store the edge informa-
tion about AE, where AT(V,AE) = T, ® Tj.
So the number of different edges is |[AE|. And
we compress the vertex coordinate information by
using Costa’s entropy coding. In order to encode
AFE we adopt the IBM connectivity encoding al-
gorithm for the AT(V,AE). According to their
work, each vertex can be encoded 4 bits on aver-
age.

So we finally got two compressed files, one for
vertex coordinates and the other for AE). It is
easy to see that the number of bits to represent
the connectivity information for a TIN graph is
(4-p-m). Thus the expected bit per vertex
in our Delaunay encoding scheme is 4 - p-m =
(4-0.1-3n)/n = 1.2 bits.

5 CONCLUDING REMARKS

We propose a new geometric compression method
for triangulated terrain model. Our experiment
shows that the typical terrain data e.g., TIN is
quite similar to the Delaunay triangulation of the
same point set. Several experiments proved that
more than 90% of edges are common in DT and
any TIN terrain. This means that most of the

edges in a plain TIN data could be implicitly de-
fined by Delaunay triangulation rule. By apply-
ing this idea, the whole topology of a terrain mesh
is encoded with two parts, one is a rule(Delaunay
Triangulation) and the other is a small portion of
data(vertex coordinates).

A simple analysis shows that this compress-
ing strategy gives 1.2 bits per vertex compress-
ing rate, which is a quit competitive result. De-
compressing completes in a few seconds, since
our decompressing algorithm depends on the per-
formance of a Delaunay triangulation algorithm
only. Since as far as we know there had been lots
of very fast Delaunay triangulation implementa-
tion, our propose is practical.

One advantage of our algorithm is that we can
recover a part of terrain easily since Delaunay tri-
angulation could be done locally due to its generic
property. If you want to modify mesh connectiv-
ity, you only need to add some edge information
to AT(V,AE).

In the future, we have to find a good encoding
scheme for AFE, by exploiting the fact that it is
smaller portion comparing with the whole edge
set.

REFERENCES

[HH96] Hugues Hoppe, Progressive Meshes, SIG-
GRAPH 96 Proc., pp. 99-108, Aug., 1996.

[HH97] Hugues Hoppe, View-dependent refine-
ment of progressive meshes, SIGGRAPH
’97 Proc., pp. 189-198, July, 1997.

[HSurvey97] Paul S. Heckbert and Michael Gar-
land, Survey of Polygonal Surface Simplifi-
cation Algorithms, SIGGRAPH ’97 Course
Notes., May, 1997.

[Schroe92] William J. Schroeder and Jonathan A.
Zarge and William E. Lorensen, Decimation
of triangle meshes, SIGGRAPH ’92 Proc.,
July, pp. 65-70, 1992.

[Turan84] Gyorgy Turan, On the Succinct Rep-
resentation Of Graphs, Discrete Applied
Mathematics. pp. 289-294, 1984.

[Kenn95] Kenneth Keeler, Jeffery Westbrook,
Short encodings of planar graphs and maps,
Discrete Applied Mathematics. pp. 239-252,
1995.

[Geom94] Joseph O’Rourke, Computational Ge-
ometry In C, CAMBRIDGE University
Press., 1994.

[Deer95] Michael Deering, Geometry Compres-
sion, SIGGRAPH ’95 Proc. pp. 13-20,
Aug., 1995.

[Mchow97] Mike M. Chow, Optimized Geome-
try Compression for Real-time Rendering,
Visualization ‘97 Proc. pp. 347-354, IEEE
Computer Society Press., 1995.

[Costa98] Costa Touma, Craig Gotsman, Trian-
gle Mesh Compression, Proc. of Graphics
Interface ’98, pp. 26-34, 1998.

[Taubin96] G. Taubin, J.Rossignac, Geometric
compression through topological surgery,
Research Report RC-20340, IBM Research
Division, 1996.

[Garland95] Michael Garland and Paul S. Heck-
bert, Fast Polygonal Approzimation of Ter-
rains and Height Fields, CMU-CS 95-181,
CS Dept., Sept, 1995.

[Heck97] Michael Garland and Paul S. Heckbert,
Surface Simplification using Quadric Error
Metrics, SIGGRAPH ’97 Proc., pp. 209-
216, July., 1997.

[JR96] J. R. Shewchuk, A Tuwo-Dimensional
Quality Mesh Generator and Delaunay Tri-
angulator,
http://www.cs.cmu.edu/quake/triangle. html,
July, 1996.

