
© Copyright IBM Corporation 2008 Trademarks
Efficient data transfer through zero copy Page 1 of 10

Efficient data transfer through zero copy
Zero copy, zero overhead

Sathish K. Palaniappan
System Software Engineer
Systems Documentation, Inc. (SDI)

Pramod B. Nagaraja
Associate System Software Engineer
Systems Documentation, Inc. (SDI)

02 September 2008

This article explains how you can improve the performance of I/O-intensive Java™ applications
running on Linux® and UNIX® platforms through a technique called zero copy. Zero copy lets
you avoid redundant data copies between intermediate buffers and reduces the number of
context switches between user space and kernel space.

Many Web applications serve a significant amount of static content, which amounts to reading
data off of a disk and writing the exact same data back to the response socket. This activity might
appear to require relatively little CPU activity, but it's somewhat inefficient: the kernel reads the
data off of disk and pushes it across the kernel-user boundary to the application, and then the
application pushes it back across the kernel-user boundary to be written out to the socket. In
effect, the application serves as an inefficient intermediary that gets the data from the disk file to
the socket.

Each time data traverses the user-kernel boundary, it must be copied, which consumes CPU
cycles and memory bandwidth. Fortunately, you can eliminate these copies through a technique
called — appropriately enough — zero copy. Applications that use zero copy request that the
kernel copy the data directly from the disk file to the socket, without going through the application.
Zero copy greatly improves application performance and reduces the number of context switches
between kernel and user mode.

The Java class libraries support zero copy on Linux and UNIX systems through the transferTo()
method in java.nio.channels.FileChannel. You can use the transferTo() method to transfer
bytes directly from the channel on which it is invoked to another writable byte channel, without
requiring data to flow through the application. This article first demonstrates the overhead incurred
by simple file transfer done through traditional copy semantics, then shows how the zero-copy
technique using transferTo() achieves better performance.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/


developerWorks® ibm.com/developerWorks/

Efficient data transfer through zero copy Page 2 of 10

Date transfer: The traditional approach

Consider the scenario of reading from a file and transferring the data to another program over
the network. (This scenario describes the behavior of many server applications, including Web
applications serving static content, FTP servers, mail servers, and so on.) The core of the
operation is in the two calls in Listing 1 (see Download for a link to the complete sample code):

Listing 1. Copying bytes from a file to a socket

File.read(fileDesc, buf, len);
Socket.send(socket, buf, len);

Although Listing 1 is conceptually simple, internally, the copy operation requires four context
switches between user mode and kernel mode, and the data is copied four times before the
operation is complete. Figure 1 shows how data is moved internally from the file to the socket:

Figure 1. Traditional data copying approach

Figure 2 shows the context switching:



ibm.com/developerWorks/ developerWorks®

Efficient data transfer through zero copy Page 3 of 10

Figure 2. Traditional context switches

The steps involved are:

1. The read() call causes a context switch (see Figure 2) from user mode to kernel mode.
Internally a sys_read() (or equivalent) is issued to read the data from the file. The first copy
(see Figure 1) is performed by the direct memory access (DMA) engine, which reads file
contents from the disk and stores them into a kernel address space buffer.

2. The requested amount of data is copied from the read buffer into the user buffer, and the
read() call returns. The return from the call causes another context switch from kernel back to
user mode. Now the data is stored in the user address space buffer.

3. The send() socket call causes a context switch from user mode to kernel mode. A third copy
is performed to put the data into a kernel address space buffer again. This time, though, the
data is put into a different buffer, one that is associated with the destination socket.

4. The send() system call returns, creating the fourth context switch. Independently and
asynchronously, a fourth copy happens as the DMA engine passes the data from the kernel
buffer to the protocol engine.

Use of the intermediate kernel buffer (rather than a direct transfer of the data into the user buffer)
might seem inefficient. But intermediate kernel buffers were introduced into the process to improve
performance. Using the intermediate buffer on the read side allows the kernel buffer to act as a
"readahead cache" when the application hasn't asked for as much data as the kernel buffer holds.
This significantly improves performance when the requested data amount is less than the kernel
buffer size. The intermediate buffer on the write side allows the write to complete asynchronously.

Unfortunately, this approach itself can become a performance bottleneck if the size of the data
requested is considerably larger than the kernel buffer size. The data gets copied multiple times
among the disk, kernel buffer, and user buffer before it is finally delivered to the application.

Zero copy improves performance by eliminating these redundant data copies.



developerWorks® ibm.com/developerWorks/

Efficient data transfer through zero copy Page 4 of 10

Data transfer: The zero-copy approach

If you re-examine the traditional scenario, you'll notice that the second and third data copies are
not actually required. The application does nothing other than cache the data and transfer it back
to the socket buffer. Instead, the data could be transferred directly from the read buffer to the
socket buffer. The transferTo() method lets you do exactly this. Listing 2 shows the method
signature of transferTo():

Listing 2. The transferTo() method

public void transferTo(long position, long count, WritableByteChannel target);

The transferTo() method transfers data from the file channel to the given writable byte channel.
Internally, it depends on the underlying operating system's support for zero copy; in UNIX and
various flavors of Linux, this call is routed to the sendfile() system call, shown in Listing 3, which
transfers data from one file descriptor to another:

Listing 3. The sendfile() system call

#include <sys/socket.h>
ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

The action of the file.read() and socket.send() calls in Listing 1 can be replaced by a single
transferTo() call, as shown in Listing 4:

Listing 4. Using transferTo() to copy data from a disk file to a socket

transferTo(position, count, writableChannel);

Figure 3 shows the data path when the transferTo() method is used:

Figure 3. Data copy with transferTo()



ibm.com/developerWorks/ developerWorks®

Efficient data transfer through zero copy Page 5 of 10

Figure 4 shows the context switches when the transferTo() method is used:

Figure 4. Context switching with transferTo()

The steps taken when you use transferTo() as in Listing 4 are:

1. The transferTo() method causes the file contents to be copied into a read buffer by the DMA
engine. Then the data is copied by the kernel into the kernel buffer associated with the output
socket.

2. The third copy happens as the DMA engine passes the data from the kernel socket buffers to
the protocol engine.

This is an improvement: we've reduced the number of context switches from four to two and
reduced the number of data copies from four to three (only one of which involves the CPU). But
this does not yet get us to our goal of zero copy. We can further reduce the data duplication done
by the kernel if the underlying network interface card supports gather operations. In Linux kernels
2.4 and later, the socket buffer descriptor was modified to accommodate this requirement. This
approach not only reduces multiple context switches but also eliminates the duplicated data copies
that require CPU involvement. The user-side usage still remains the same, but the intrinsics have
changed:

1. The transferTo() method causes the file contents to be copied into a kernel buffer by the
DMA engine.

2. No data is copied into the socket buffer. Instead, only descriptors with information about the
location and length of the data are appended to the socket buffer. The DMA engine passes
data directly from the kernel buffer to the protocol engine, thus eliminating the remaining final
CPU copy.

Figure 5 shows the data copies using transferTo() with the gather operation:



developerWorks® ibm.com/developerWorks/

Efficient data transfer through zero copy Page 6 of 10

Figure 5. Data copies when transferTo() and gather operations are used

Building a file server
Now let's put zero copy into practice, using the same example of transferring a file between
a client and a server (see Download for the sample code). TraditionalClient.java and
TraditionalServer.java are based on the traditional copy semantics, using File.read()
and Socket.send(). TraditionalServer.java is a server program that listens on a particular
port for the client to connect, and then reads 4K bytes of data at a time from the socket.
TraditionalClient.java connects to the server, reads (using File.read()) 4K bytes of data from
a file, and sends (using socket.send()) the contents to the server via the socket.

Similarly, TransferToServer.java and TransferToClient.java perform the same function, but
instead use the transferTo() method (and in turn the sendfile() system call) to transfer the file
from server to client.

Performance comparison

We executed the sample programs on a Linux system running the 2.6 kernel and measured the
run time in milliseconds for both the traditional approach and the transferTo() approach for
various sizes. Table 1 shows the results:

Table 1. Performance comparison: Traditional approach vs. zero copy

File size Normal file transfer (ms) transferTo (ms)

7MB 156 45

21MB 337 128

63MB 843 387

98MB 1320 617

200MB 2124 1150



ibm.com/developerWorks/ developerWorks®

Efficient data transfer through zero copy Page 7 of 10

350MB 3631 1762

700MB 13498 4422

1GB 18399 8537

As you can see, the transferTo() API brings down the time approximately 65 percent compared
to the traditional approach. This has the potential to increase performance significantly for
applications that do a great deal of copying of data from one I/O channel to another, such as Web
servers.

Summary

We have demonstrated the performance advantages of using transferTo() compared to reading
from one channel and writing the same data to another. Intermediate buffer copies — even
those hidden in the kernel — can have a measurable cost. In applications that do a great deal of
copying of data between channels, the zero-copy technique can offer a significant performance
improvement.



developerWorks® ibm.com/developerWorks/

Efficient data transfer through zero copy Page 8 of 10

Downloads

Description Name Size
Sample programs for this article j-zerocopy.zip 3KB

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=333543&filename=j-zerocopy.zip&method=http&locale=


ibm.com/developerWorks/ developerWorks®

Efficient data transfer through zero copy Page 9 of 10

Resources

• "Zero Copy I: User-Mode Perspective" (Dragan Stancevic, Linux Journal, January 2003):
Read more about zero copy and sendfile().

• "An Efficient Zero-Copy I/O Framework for UNIX" (Moti N. Thadani and Yousef A. Khalidi,
Sun Microsystems, May 1995): This paper presents a zero-copy framework for buffer
management and exchange between application programs and the UNIX kernel.

• transferTo(): Javadoc for the java.nio.channels.FileChannel class's
transferTo() method.

• "Improving Linux kernel performance and scalability" (Sandra Johnson, William Hartner,
and William Brantley, developerWorks, January 2003): Learn about benchmarks used to
measure, analyze, and improve the performance and scalability of the Linux kernel.

• Browse the technology bookstore for books on these and other technical topics.
• developerWorks Java technology zone: Find hundreds of articles about every aspect of Java

programming.
• Check out developerWorks blogs and get involved in the developerWorks community.

http://www.linuxjournal.com/article/6345
http://research.sun.com/techrep/1995/smli_tr-95-39.pdf
http://java.sun.com/j2se/1.4.2/docs/api/java/nio/channels/FileChannel.html#transferTo(long,%20long,%20java.nio.channels.WritableByteChannel)
http://www.ibm.com/developerworks/linux/library/l-kperf/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/java
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community


developerWorks® ibm.com/developerWorks/

Efficient data transfer through zero copy Page 10 of 10

About the authors

Sathish K. Palaniappan

Sathiskumar Palaniappan is a system software engineer with the Java Technology
Centre, IBM India Labs.

Pramod B. Nagaraja

Pramod B. Nagaraja is a software engineer with the Java Technology Centre, IBM
India Labs.

© Copyright IBM Corporation 2008
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Date transfer: The traditional approach
	Data transfer: The zero-copy approach
	Building a file server
	Performance comparison

	Summary
	Downloads
	Resources
	About the authors
	Trademarks

