Stop Thinking, Just Do!
Sungsoo Kim's Blog
Main Memory and Streaming Databases
Tags
14 December 2015
Article Source
Topics in Main Memory and Streaming Databases
Main Memory Databases
IEEE Data Engineering Bulletin, Special Issue on Main Memory Databases June, 2013, Paul Larson (editor). Google (IEEE Data Engineering Bulletin)
Main Memory Databases 2
OLTP through the looking glass, and what we found there S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker, SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 2008, pp. 981-992.
The End of an Architectural Era: (It’s Time for a Complete Rewrite) M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland, VLDB ’07: Proceedings of the 33rd international conference on Very large databases, 2007, pp. 1150-1160.
H-Store: a High-Performance, Distributed Main Memory Transaction Processing System R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi, Proc. VLDB Endow., vol. 1, iss. 2, pp. 1496-1499, 2008.
Anti-Caching: A New Approach to Database Management System Architecture J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik, Proc. VLDB Endow., vol. 6, pp. 1942-1953, 2013.
Main Memory Databases 3
HyPer: A Hybrid OLTP&OLAP Main Memory Database System Based on Virtual Memory Snapshots Alfons Kemper and Thomas Neumann, ICDE 2011.
Trekking Through Siberia: Managing Cold Data in a Memory-Optimized Database Ahmed Eldawy, Justin Levandoski, and Paul Larson, International Conference on Very Large Databases (PVLDB Vol. 7, Issue. 11), June 2014, VLDB – Very Large Data Bases, September 2014
HYRISE: a main memory hybrid storage engine Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., & Madden, S. (2010), Proceedings of the VLDB Endowment, 4(2), 105-116.
Streaming Systems
STREAM: The Stanford Data Stream Management System. Book chapter - to appear. Arasu, A., A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivastava, U., and Widom, J.
The Aurora and Borealis Stream Processing Engines. Cetintemel, U., Abadi,D., Ahmad, Y., Balakrishnan, H., Balazinska, M., Cherniack, M., Hwang, J., Lindner, W., Madden, S., Maskey, A., Rasin, A., Ryvkina, E., Stonebraker, M., Tatbul, N., Xing, Y., and Zdonik, S. Book chapter in Data Stream Management: Processing High-Speed Data Streams. Edited by M. Garofalakis, J. Gehrke, R. Rastogi, Springer, 2007
Telegraph CQ: Continuous Dataflow Processing for an Uncertain World Chandrasekaran, S., et al. CIDR 2003.
Introducing Microsoft StreamInsight. T. Grabs, R. Schindlauer, R. Krishnan, J. Goldstein. Microsoft White Paper, September 2009, Revised May 2010.
Storm@Twitter, Proceedings Proceedings of the 2014 ACM SIGMOD international conference on Management of data Pages 147-156
Stream Processing
Models and Issues in Data Stream Systems Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J. (PODS 2002), Madison, WI, June 2002.
Remembrance of Streams Past: Overload-Sensitive Management of Archived Data Streams Chandrasekaran, S. and Franklin, M. In Proceedings of the 30th International Conference on Very Large Data Bases (VLDB 2004). Toronto, Canada. August 2004.
Joining Punctuated Streams Ding, L., Mehta, N., Rudensteiner, E., and Heineman, G.T. EDBT 2004
Semantics and Evaluation Techniques for Window Aggregates in Data Streams Li, J., Maier, D., Tufte, K., Papadimos, V., and Tucker, P. In Proceedings of the 2005 ACM SIGMOD Conference on Management of Data, Toronto, Canada, June 2005.
Query Languages
The CQL Continuous Query Language: Semantic Foundations and Query Execution Arasu, A., Babu, S., and Widom, J. Technical Report, October 2003.
Hancock: A Language for Extracting Signatures from Data Streams Cortes, C., Fisher, K., Pregibon, D., Rogers, A., Smith, F.
Optimization
Design and Evaluation of Alternative Selection Placement Strategies in Optimizing Continuous Queries Chen J., DeWitt, D., and Naughton, J. IDEC 2002
Evaluating Window Joins over Unbounded Streams Kang, J., Naughton, J., Viglas, S. VLDB 2003
No Pane, No Gain: Efficient Evaluation of Sliding-Window Aggregates over Data Streams Li, J. Maier, D., Tufte, K., Papadimos, V., Tucker, P. SIGMOD Record, March 2005.
Rate-Based Query Optimization for Streaming Information Sources Viglas, S. and Naughton, J. In Proceedings of the 2002 ACM SIGMOD Conference on Management of Data, Madison, WI, June 2002.
Distributed Systems/Fault Tolerance
Minimizing Latency in Fault-Tolerant Distributed Stream Processing Systems Brito, A., Fetzer, C., Felber, P. ICDCS’09 (Slides)
High-Availability Algorithms for Distributed Stream Processing Hwayng, J., Balazinska, M. et. al. ICDE 2005
Towards Autonomic Fault Recovery in System-S Jacques-Silva, G., Chalenger, J., Degenaro, L., Giles, J., Wagle, R. ICAC’07
Scaling Data Stream Systems
Processing high data rate streams in System S H. Andrade, B. Gedik, K. -L. Wu, and P. S. Yu. 2011. J. Parallel Distrib. Comput. 71, 2 (February 2011), 145-156.
Optimized Processing of Multiple Aggregate Continuous Queries Guirguis, S., Sharaf, M., Chrysanthis, P., Labrinids, A. CIKM 11
Query-aware partitioning for monitoring massive network data streams Johnson, T., Muthukrishnan, S.M., Shkapenyuk, V., Spatscheck, O. SIGMOD 2008.
From a stream of relational queries to distributed stream processing Qiong Zou, Huayong Wang, Robert SouléMartin Hirzel, Henrique Andrade, Bugra Gedik, and Kun-Lung Wu. 2010.Proc. VLDB Endow. 3, 1-2 (September 2010), 1394-1405.
Please enable JavaScript to view the comments powered by Disqus.
comments powered by