Article Source
- Title: Structural Analysis and Visualization of Networks
- Authors: Prof. Leonid Zhukov, National Research University Higher School of Economics
Structural Analysis and Visualization of Networks
Outline
- Introduction to network science
- Power laws
- Models of network formation
- Structure, nodes and links analysis
- Network communities
- Evolving networks and link prediction
- Diffusion and random walks
- Epidemics on networks
- Diffusion of information
- Influence propagation
Module 3
Lectures
- [15.01.2015] Introduction to network science. [Lecture 1] [Video]
Introduction to the complex network theory. Network properties and metrics. - [20.01.2015] Power laws.
[Lecture 2] [Video]
Power law distribution. Scale-free networks.Pareto distribution, noramlization, moments. Zipf law. Rank-frequency plot. - [27.01.2015] Random graphs. [Lecture 3] [Video]
Erdos-Reni random graph model. Poisson and Bernulli distributions. Distribution of node degrees. Phase transition, gigantic connected component. Diameter and cluster coefficient. Configuration model - [03.02.2015] Small world and dynamical growth
models. [Lecture 4] [Video]
Barabasi-Albert model. Preferential attachement. Time evolition of node degrees. Node degree distribution. Average path length and clustering coefficient. Small world model. Watts-Strogats model. Transition from ragular to random. Clustering coefficient and ave path lenght. - [10.02.2015] Centrality measures. [Lecture 5]
[Video]
Node centrality metrics, degree centrality, closeness centrality, betweenness centrality, eigenvector centrality. Katz status index and Bonacich centrality, alpha centrality Spearman rho and Kendall-Tau ranking distance. - [17.02.2015] Link analysis. [Lecture 6 ]
[Video]
Directed graphs. PageRank, Perron-Frobenius theorem and algorithm convergence. Power iterations. Hubs and Authorites. HITS algorithm. - [24.02.2015] Structural equivalence. [Lecture 7]
[Video]
Structural and regular equivalence. Similarity metrics. Correlation coefficient and cosine similarity. Assortative mixing and homophily. Modularity. Assortativity coefficient. Mixing by node degree. Assortative and disassortative networks. - [03.03.2015] Network communitites. [Lecture 8] [Video]
Cohesive subgroups. Graph cliques, k-plexes, k-cores. Network communities. Vertex similarity matrix. Similarity based clustering. Agglomerative clustering. Graph partitioning. Repeated bisection. Edge Betweenness. Newman-Girvin algorithm. - [10.03.2015] Graph partitioning algorithms.
[Lecture 9] [Video]
Graph density. Graph pertitioning. Min cut, ratio cut, normalized and quotient cuts metrics. Spectral graph partitioning (normalized cut). Direct (spectral) modularity maximization. Multilevel recursive partitioning - [17.03.2015] Community detection.
[Lecture 10] [Video]
Community detection algorithms. Overlapping communities. Clique percolation method. Heuristic methods. Label propagation. Fast community unfolding. Random walk based methods. Walktrap. Nibble. - [24.03.2015] Student midterm exam presentations. [Video]
Labs
iPython notebooks:
- Introduction to iPython enviroment and NetworkX. Lab 1
- Power laws. Lab 2
- Random graphs. Lab 3
- Small world models. Lab 4
- Node centralities. Lab 5
- PageRank and HITS. Lab 6
- Structural similarity. Lab 7
- Dense Subgroups in Networks, Communities and Motif counting. Lab 8
- Community detection algorithms. Lab 9
- Community detection algorithms, part 2. Lab 10
Homeworks
- [20.01.2015, due: 28.01.2015]. Power laws. Homework 1
- [10.02.2015, due: 18.02.2015]. Network models. Homework 2
- [27.02.2015, due: 09.03.2015]. Centralities and assortativitiy coefficients. Homework 3
- [11.03.2015, due: 19.03.2015]. Community Detection Algorithms. Homework 4
- [17.03.2015, due: 24.03.2015]. FB or VK personal graph analysis. Midterm exam presentation.
Module 4
Lectures
- [31.03.2015] Diffusion on networks [Lecture 11]
[Video]
Random walks on graph. Stationary distribution. Physical diffusion. Diffusion equation. Diffusion on networks. Discrete Laplace operator, Laplace matrix. Solution of the diffusion equation. Normalized Laplacian. - [07.04.2015] Epidemics [Lecture 12]
[Video]
Epidemic models: SI, SIS, SIR. Limiting cases. Basic reproduction number. Branching Galton-Watson process. Probability of epidemics. - [14.04.2015] Epidemics on networks [Lecture 13]
[Video]
.
Spread of epidemics on network. SI, SIS, SIR models. Epidemic threshold. Simulations of infection propagation. - [21.04.2015] Social contagion and spread of information [Lecture 14] [Video]
Information diffusion. Rumor spreading models. Homogenous and mean field models. Examples. Cascades and information propagation trees. - [28.04.2015] Diffusion of innovation and influence maximization [Lecture 15] [Video]
Diffusion of innovation. Independent cascade model. Linear threshold model. Influence maximization. Submodular functions. Finding most influential nodes in networks. - [12.05.2015] Social learning [Lecture 16]
[Video]
Social learning in networks. DeGroot model. Reaching consensus. Influence vector. Social influence networks - [19.05.2015] Label propagation on graph [Lecture 17]
[Video1] [Video2]
Node labeling. Label propagation. Iterative classification. Semi-supervised learning. Regularization on graphs - [26.05.2015] Link prediction [Lecture 18] [Video]
Link prediction problem. Proximity measures. Scoring algorithms. Prediction by supervised learning. Performance evaluation. - [02.06.2015] Spatial
segregation [Lecture 19] [Video]
Schelling's segregation model. Spatial segregation. Agent based modelling. Segregation in networks - [09.06.2015] Strategic network formation [Lecture 20]
Economic models of networks. Course summary.
Labs
iPython notebooks:
- Random walk modeling. Lab 1
- Epidemics Lab 2
- Epidemics on networks. Lab 3
- Threshold models. Lab 4
- Social learning. Lab 5
- Node label and link prediction. Lab 6
- Segregation models. Lab 7
Projects
- Information and influence propagation in networks. Course Project 1
- Link prediction. Course Project 2
Reading material
-
Lecture 1:
- Albert-Laszlo Barabasi and Eric Bonabeau. Scale Free Networks. Scientific American, p 50-59, 2003
- Mark Newman. The physics of networks. Physics Today,2008
- Stanley Milgram. The Small-World Problem. Psychology Today, Vol 1, No 1, pp 61-67, 1967
- J. Travers and S. Milgram. An Experimental Study of the Small World Problem. Sociometry, vol 32, No 4, pp 425-433, 1969
- J. Leskovec and E. Horvitz. Planetary-Scale Views on a Large Instant-Messaging Network. Proceedigs WWW 2008
- L. Backstrom, P. Boldi, M. Rosa, J. Ugander, S. Vigna. Four Degrees of Separation. WebSci '12 Procs. 4th ACM Web Science Conference, pp 33-42, 2012
- M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46(5), 323-351, 2005
- A. Clauset, C.R. Shalizi, M.E.J. Newman. Power-law distributions in empirical data. SIAM Review 51(4), 661-703, 2009
- M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions. Internet Mathematics, vol 1, No. 2, pp. 226-251, 2004.
- M.L. Goldstein, S.A. Morris, and G.G. Yen. Problems with fitting to the power-law distribution , Eur. Phys. J. B 41, pp 255–258, 2004.
- Chapter 18. Power Laws and Rich-Get-Richer Phenomena. D. Easley and J. Kleinberg. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World".
- P. Erdos and A. Renyi. On random graphs I. Publ. Math. Debrecen, 1959.
- P. Erdos and A. Renyi. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutato Int. Koezl., 1960.
- Chapter 12. Random graphs. Mark Newman. "Networks: An Introduction". Oxford University Press, 2010.
- Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. . Nature 393:440-42, 1998.
- AL Barabasi and R. Albert. Emergence of Scaling in Random Networks. Science, 286, 1999.
- Chapter 14. Models of network formation. Mark Newman. "Networks: An Introduction". Oxford University Press, 2010.
- Chapter 20. The Small-World Phenomenon. D. Easley and J. Kleinberg. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World".
- Linton C. Freeman. Centrality in Social Networks. Conceptual Clarification. Social Networks, Vol 1, pp 215-239, 1978
- Phillip Bonacich. Power and Centrality: A Family of Measures. American journal of sociology, Vol.92, pp 1170-1182, 1987.
- Leo Katz A new status index derived from sociometric analysis . Psychometrika, 19, 39-43, 1953.
- Phillip Bonacich, Paulette Lloyd, Eigenvector-like measures of centrality for asymmetric relations . Social Networks 23, 191–201, 2001
- Chapter 7. Measures and metrics. Mark Newman. "Networks: An Introduction". Oxford University Press, 2010.
- Chapter 5. Centrality and Prestige. S. Wasserman and K. Faust. "Social Network Analysis. Methods and Applications". Cambridge University Press, 1994
- Sergey Brin, Larry Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine, ,1998.
- John M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998.
- Andrei Broder et all. Graph structure in the Web. Procs of the 9th international World Wide Web conference, 2000
- Amy N. Langville and Carl D. Meyer, A Survey of Eigenvector Methods of Web Information Retrieval. 2004
- David F. Gleich. PageRank beyond the Web arXiv:1407.5107, 2014
- Chapter 7. Measures and metrics. Mark Newman. "Networks: An Introduction". Oxford University Press, 2010.
- Chapter 14. Link Analysis and Web Search. D. Easley and J. Kleinberg. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World".
- White, D., Reitz, K.P. Measuring role distance: structural, regular and relational equivalence. Technical report, University of California, Irvine, 1985
- S. Borgatti, M. Everett. The class of all regular equivalences: algebraic structure and computations. Social Networks, v 11, p65-68, 1989
- E. A. Leicht, P.Holme, and M. E. J. Newman. Vertex similarity in networks. Phys. Rev. E 73, 026120, 200
- G. Jeh and J. Widom. SimRank: A Measure of Structural-Context Similarity. Proceedings of the eighth ACM SIGKDD , p 538-543. ACM Press, 2002
- M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a Feather: Homophily in Social Networks, Annu. Rev. Sociol, 27:415-44, 2001.
- M. Newman. Mixing patterns in networks. Phys. Rev. E, Vol. 67, p 026126, 2003
- M. D. Conover, J. Ratkiewicz, et al. Political Polarization on Twitter. Fifth International AAAI Conference on Weblogs and Social Media, 2011
- N. Christakis and J. Fowler. The spread of obesity in a large social network over 32 years. Engl J Med v 357:370-379, 2007
- Chapter 9. Structural Equivalence. S. Wasserman and K. Faust. "Social Network Analysis. Methods and Applications". Cambridge University Press, 1994
- Chapter 12. Network Positions and Roles. S. Wasserman and K. Faust. "Social Network Analysis. Methods and Applications". Cambridge University Press, 1994
- Chapter 7. Measures and metrics. Mark Newman. "Networks: An Introduction". Oxford University Press, 2010.
- S. E. Schaeffer. Graph clustering. Comp. Sci. Rev., Vol. 1, p 27-64, 2007
- S. Fortunato. Community detection in graphs . Physics Reports, Vol. 486, pp. 75-174, 2010
- V. Batagelj, M. Zaversnik. An O(m) Algorithms for Cores Decomposition of Networks. 2003
- M.E.J. Newman. Modularity and community structure in networks. PNAS Vol. 103, N 23, pp 8577-8582, 2006
- Chapter 7. Matrix algorithms and graph partitioning. Mark Newman. "Networks: An Introduction". Oxford University Press, 2010.
- M. Fiedler. Algebraic connectivity of graphs, Czech. Math. J, 23, pp 298-305, 1973
- A. Pothen, H. Simon and K. Liou. Partitioning sparse matrices with eigenvectors of graphs, SIAM Journal of Matrix Analysis, 11, pp 430-452, 1990
- Bruce Hendrickson and Robert Leland. A Multilevel Algorithm for Partitioning Graphs, Sandia National Laboratories, 199
- Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, N 8, pp 888-905, 2000
- M.E.J. Newman, M. Girvan. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113, 2004.
- B. Good, Y.-A. de Montjoye, A. Clauset. Performance of modularity maximization in practical contexts, Physical Review E 81, 046106, 2010
- Chapter 11. Matrix algorithms and graph partitioning. Mark Newman. "Networks: An Introduction". Oxford University Press, 2010.
- G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature 435, 814-818, 2005.
- U.N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community structures in large-scale networks, Phys. Rev. E 76 (3), 036106, 2007.
- P. Pons and M. Latapy, Computing communities in large networks using random walks, Journal of Graph Algorithms and Applications, 10, 191-218, 2006.
- V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech. P10008, 2008.
- Daniel A. Spielman, Shang-Hua Teng. A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning. SIAM Journal on computing, Vol. 42, p. 1-26, 2013
- R. Andersen, F. Chung, K. Lang. Local graph partitioning using pagerank vectors. In Proc. FOCS, 2006.
- J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney. Statistical properties of community structure in large social and information networks. In WWW 08: Procs. of the 17th Int. Conf. on World Wide Web, pages 695-704, 2008.
- Lovasz, L. Random walks on graphs: a survey. In Combinatorics, Paul Erdos is eighty. pp. 353 – 397. Budapest: Janos Bolyai Math. Soc., 1993
- Chung, Fan R.K. Spectral graph theory (2ed.). Chapter 1. Providence, RI: American Math. Soc., 1997
- Daniel A. Spielman. Spectral Graph theory. Combinatorial Scientific Computing. Chapman and Hall/CRC Press. 2011
- Chapter 6. Mathematics of networks. Mark Newman. "Networks: An Introduction". Oxford University Press, 2010.
- H.W. Hethcote. The Mathematics of Infections Diseases. SIAM Review, Vol. 42, No. 4, pp. 599-653, 2000
- Chapter 17. Epidemics on networks. Mark Newman. "Networks: An Introduction". Oxford University Press, 2010.
- Matt. J. Keeling and Ken.T.D. Eames. Networks and Epidemics models Journal R. Soc. Interface, Vol 2, pp 295-307, 2005
- G. Witten and G. Poulter Simulations of infections diseases on networks Computers in Biology and Medicine, Vol 37, No. 2, pp 195-205, 2007
- M. Kuperman and G. Abramson Small World Effect in an Epidemiological Model., Phys. Rev. Lett., Vol 86, No 13, pp 2909-2912, 2001
- Manitz J, Kneib T, Schlather M, Helbing D, Brockmann D. Origin Detection During Food-borne Disease Outbreaks - A Case Study of the 2011 EHEC/HUS Outbreak in Germany. PLoS Currents. 2014
- Chapter 17. Epidemics on networks. Mark Newman. "Networks: An Introduction". Oxford University Press, 2010.
- Chapter 21. Epidemics. D. Easley and J. Kleinberg. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World".
- D.J. Daley and D.G. Kendall. Stochastic Rumours. J. Inst. Maths. Applics 1, 42-45, 1965.
- A. Barrat, M. Barthelemy, A. Vespignani Eds. Dynamical processes on complex networks, Cambridge University Press 2008
- Y. Moreno, M. Nekovee, A. Pacheco. Dynamics of rumor spreading in complex networks. Phys. Rev. E 69, 066130, 2004
- M. Nekovee, Y. Moreno, G. Biaconi, M. Marsili. Theory of rumor spreading in complex social networks. Physica A 374, pp 457-470, 2007.
- Luis M.A. Bettencours, A. Cintron-Arias, D.I. Kaiser, C. Castillo-Chavez. The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models. Physica A, 364, pp 513-536, 2006.
- D. Liben-Nowell, Jon Kleinberg. Tracing in formation flow on a global scale using Internet chain-letter data. , PNAS vol 105, n 12, pp 4633-4638, 2008
- J.L. Iribarren, E. Moro, Impact of Human Activity Patterns on the Dynamics of Information Diffusion, Phys. Rev. Letters, Vol 103, 038702, 2009
- J. Leskovec, L. Adamic, B. Huberman, The Dynamics of Viral Marketing, EC 2006
- Mark S. Granovetter. Threshold Models of Collective Behavior. American Journal of Sociology Vol. 83, No. 6, pp. 1420-1443, 1978.
- H. Peyton Young. The Diffusion of Innovations in Social Networks. In L. E. Blume and S. N. Durlauf (eds.), The Economy as an Evolving Complex System III (2003)
- D. Kempe, J. Kleinberg, E. Tardos. Maximizing the Spread of Influence through a Social Network. In Proc. KDD 2003.
- D. Watts. A simple model of global cascades on random networks. Proc. Natl. Acad. Sci., vol. 99 no. 9, 5766-5771, 2002.
- D. Kempe, J. Kleinberg, E. Tardos. Influential Nodes in a Diffusion Model for Social Networks. Lecture Notes in Computer Science, Eds C. Luis, I.Giuseppe et.al, 2005
- S. Morris. Contagion. Review of Economic Studies 67, 57-78, 2000.
- L.Backstrom, D. Huttenlocher, J. Kleinbrg, X. Lan, Group Formation in Large Social Networks: Membership, Growth and Evolution, In Proc. KDD 2006.
- Chapter 19. Cascading Behavior in Neworks. D. Easley and J. Kleinberg. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World".
- Chapter 7. Diffusion through Networks. Matthew O. Jackson. "Social and Economic Networks".
- M.H. DeGroot. Reaching a Consensus. Journal of the American Statistical Association, 1974, Vol 69, No 345
- Roger L. Berger. A Necessary and Sufficient Condition for Reaching a Consensus Using DeGroot's Method. Journal of the American Statistical Association, Vol. 76, No 374, 1981, pp 415-418
- Noah Friedkin, and Eugene C. Johnsen, Social Influence Networks and Opinion Change Advances in Group Processes 16:1-29, 1999
- B. Golub and M. Jackson Naive Learning in Social Networks and the Wisdom of Crowds, Amer. Econ. J. Microeconomics, 2:1, pp 112-149, 2010
- Chapter 8. Learning and Networks. Matthew O. Jackson. "Social and Economic Networks".
- S. A. Macskassy, F. Provost, Classification in Networked Data: A Toolkit and a Univariate Case Study. Journal of Machine Learning Research 8, 935-983, 2007
- Bengio Yoshua, Delalleau Olivier, Roux Nicolas Le. Label Propagation and Quadratic Criterion. Chapter in Semi-Supervised Learning, Eds. O. Chapelle, B. Scholkopf, and A. Zien, MIT Press 2006
- Smriti Bhagat, Graham Cormode, S. Muthukrishnan. Node classification in social networks. Chapter in Social Network Data Analytics, Eds. C. Aggrawal, 2011, pp 115-148 D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Scholkopf. Learning with local and global consistency. In NIPS, volume 16, 2004.
- X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions. In ICML, 2003.
- M. Belkin, P. Niyogi, V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7, 2399-2434, 2006
- D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. Journal of the American Society for Information Science and Technology, 58(7):1019–1031, 2007
- R. Lichtenwalter, J.Lussier, and N. Chawla. New perspectives and methods in link prediction. KDD 10: Proceedings of the 16th ACM SIGKDD, 2010
- M. Al Hasan, V. Chaoji, S. Salem, M. Zaki, Link prediction using supervised learning. Proceedings of SDM workshop on link analysis, 2006
- M. Rattigan, D. Jensen. The case for anomalous link discovery. ACM SIGKDD Explorations Newsletter. v 7, n 2, pp 41-47, 2005
- M. Al. Hasan, M. Zaki. A survey of link prediction in social networks. In Social Networks Data Analytics, Eds C. Aggarwal, 2011.
- Thomas C. Schelling Dynamic Models of Segregation , Journal of Mathematical Sociology, Vol. 1, pp 143-186, 1971.
- Arnaud Banos Network effects in Schellin's model of segregation: new evidences from agent-based simulations. Environment and Planning B: Planning and Design Vol.39, no. 2, pp. 393-405, 2012.
- Giorgio Gagiolo, Marco Valente, Nicolaas Vriend Segregation in netwroks. Journal of Econ. Behav. & Organization, Vol. 64, pp 316-336, 2007.
- Matthew O. Jackson. The Economics of Social Networks. California Institute of Technology, 2005.
- Matthew O. Jackson. A Strategic Model of Social and Economic Networks. Journal of Economic Theory, Vol 71, pp 44-74, 1996.
- Chapter 6. Strategic Network Formation. Matthew O. Jackson. "Social and Economic Networks".
Lecture 2:
Lecture 3:
Lecture 4:
Lecture 5:
Lecture 6:
Lecture 7:
Lecture 8:
Lecture 9:
Lecture 10:
Lecture 11:
Lecture 12:
Lecture 13:
Lecture 14:
Lecture 15:
Lecture 16:
Lecture 17:
Lecture 18:
Lecture 19:
Lecture 20:
Textbooks
Books
- "Networks: An Introduction", Mark Newman. Oxford University Press, 2010.
- "Social and Economic Networks", Matthew O. Jackson. Princeton University Press, 2010.
- "Networks, Crowds, and Markets: Reasoning About a Highly Connected World." David Easley and John Kleinberg, Cambridge University Press 2010.
- "Social Network Analysis. Methods and Applications." Stanley Wasserman and Katherine Faust, Cambridge University Press, 1994
Reviews
- R. Albert and A-L. Barabasi. Statistical mechanics of complex networks. Rev. Mod. Phys, Vol. 74, p 47-97, 2002
- M. E. J. Newman. The Structure and Function of Complex Networks. SIAM Review, Vol. 45, p 167-256, 2003
- S. Boccaletti et al. Complex networks: Structure and dynamics. Phys. Reports, Vol. 424, p 175-308, 2006
- S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks. Adv. Phys. Vol. 51, N 4, p 1079-1187
Collections
- "The Structure and Dynamics of Networks". Eds.M. Newman, A.-L. Barabasi, D. Watts. Princeton University Press, 2006.
- "Network Analysis". Eds. Ulrik Brandes, Thomas Erlebach. Lecture Notes in Computer Science. Springer, 2005
- "Social Network Data Analysis. Ed. Charu C. Aggarwal. Springer, 2011
Software
Similar courses
- Social and Information Network Analysis, Jure Leskovec, Stanford
- The structure of Information Networks , Jon Kleinberg, Cornell University
- Networks, Jon Kleinberg, Eva Tardos, David Easley, Cornell University
- Structure and Dynamics of Networked Information, David Kempe, University of Southern California
- Networked Life , Michael Kearns, University of Pennsylvania
- Social and Economic Networks: Models and Analysis, Matthew O. Jackson, Stanford University
- Social Network Analysis, Lada Adamic, University of Michigan
- Networked Life , Michael Kearns, University of Pennsylvania
- Networks, Crowds and Markets , David Easley, Jon Kleinberg, Eva Tardos, Cornell University
Coursera
EdX