Advances in Neural Information Processing Systems 30 (NIPS 2017)
The papers below appear in Advances in Neural Information Processing Systems 30 edited by I. Guyon and U.V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett.
They are proceedings from the conference, “Neural Information Processing Systems 2017.”
- Wider and Deeper, Cheaper and Faster: Tensorized LSTMs for Sequence Learning Zhen He, Shaobing Gao, Liang Xiao, Daxue Liu, Hangen He, David Barber
- Concentration of Multilinear Functions of the Ising Model with Applications to Network Data Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath
- Deep Subspace Clustering Networks Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, Ian Reid
- Attentional Pooling for Action Recognition Rohit Girdhar, Deva Ramanan
- On the Consistency of Quick Shift Heinrich Jiang
- Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization Fabian Pedregosa, Rémi Leblond, Simon Lacoste-Julien
- Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis Jian Zhao, Lin Xiong, Panasonic Karlekar Jayashree, Jianshu Li, Fang Zhao, Zhecan Wang, Panasonic Sugiri Pranata, Panasonic Shengmei Shen, Shuicheng Yan, Jiashi Feng
- Dilated Recurrent Neural Networks Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael Witbrock, Mark A. Hasegawa-Johnson, Thomas S. Huang
- Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs Saurabh Verma, Zhi-Li Zhang
- Scalable Generalized Linear Bandits: Online Computation and Hashing Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak, Rebecca Willett
- Probabilistic Models for Integration Error in the Assessment of Functional Cardiac Models Chris Oates, Steven Niederer, Angela Lee, François-Xavier Briol, Mark Girolami
- Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, Julien Stainer
- Dynamic Safe Interruptibility for Decentralized Multi-Agent Reinforcement Learning El Mahdi El Mhamdi, Rachid Guerraoui, Hadrien Hendrikx, Alexandre Maurer
- Interactive Submodular Bandit Lin Chen, Andreas Krause, Amin Karbasi
- Learning to See Physics via Visual De-animation Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, Josh Tenenbaum
- Label Efficient Learning of Transferable Representations acrosss Domains and Tasks Zelun Luo, Yuliang Zou, Judy Hoffman, Li F. Fei-Fei
- Decoding with Value Networks for Neural Machine Translation Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang, Tieyan Liu
- Parametric Simplex Method for Sparse Learning Haotian Pang, Han Liu, Robert J. Vanderbei, Tuo Zhao
- Group Sparse Additive Machine Hong Chen, Xiaoqian Wang, Cheng Deng, Heng Huang
- Uprooting and Rerooting Higher-Order Graphical Models Mark Rowland, Adrian Weller
- The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings Krzysztof M. Choromanski, Mark Rowland, Adrian Weller
- From Parity to Preference-based Notions of Fairness in Classification Muhammad Bilal Zafar, Isabel Valera, Manuel Rodriguez, Krishna Gummadi, Adrian Weller
- Inferring Generative Model Structure with Static Analysis Paroma Varma, Bryan D. He, Payal Bajaj, Nishith Khandwala, Imon Banerjee, Daniel Rubin, Christopher Ré
- Structured Embedding Models for Grouped Data Maja Rudolph, Francisco Ruiz, Susan Athey, David Blei
- A Linear-Time Kernel Goodness-of-Fit Test Wittawat Jitkrittum, Wenkai Xu, Zoltan Szabo, Kenji Fukumizu, Arthur Gretton
- Cortical microcircuits as gated-recurrent neural networks Rui Costa, Ioannis Alexandros Assael, Brendan Shillingford, Nando de Freitas, TIm Vogels
- k-Support and Ordered Weighted Sparsity for Overlapping Groups: Hardness and Algorithms Cong Han Lim, Stephen Wright
- A simple model of recognition and recall memory Nisheeth Srivastava, Edward Vul
- On Structured Prediction Theory with Calibrated Convex Surrogate Losses Anton Osokin, Francis Bach, Simon Lacoste-Julien
- Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model Jiasen Lu, Anitha Kannan, Jianwei Yang, Devi Parikh, Dhruv Batra
- MaskRNN: Instance Level Video Object Segmentation Yuan-Ting Hu, Jia-Bin Huang, Alexander Schwing
- Gated Recurrent Convolution Neural Network for OCR Jianfeng Wang, Xiaolin Hu
- Towards Accurate Binary Convolutional Neural Network Xiaofan Lin, Cong Zhao, Wei Pan
- Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks Wei-Sheng Lai, Jia-Bin Huang, Ming-Hsuan Yang
- Learning a Multi-View Stereo Machine Abhishek Kar, Christian Häne, Jitendra Malik
- Phase Transitions in the Pooled Data Problem Jonathan Scarlett, Volkan Cevher
- Universal Style Transfer via Feature Transforms Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, Ming-Hsuan Yang
- On the Model Shrinkage Effect of Gamma Process Edge Partition Models Iku Ohama, Issei Sato, Takuya Kida, Hiroki Arimura
- Pose Guided Person Image Generation Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, Luc Van Gool
- Inference in Graphical Models via Semidefinite Programming Hierarchies Murat A. Erdogdu, Yash Deshpande, Andrea Montanari
- Variable Importance Using Decision Trees Jalil Kazemitabar, Arash Amini, Adam Bloniarz, Ameet S. Talwalkar
- Preventing Gradient Explosions in Gated Recurrent Units Sekitoshi Kanai, Yasuhiro Fujiwara, Sotetsu Iwamura
- On the Power of Truncated SVD for General High-rank Matrix Estimation Problems Simon S. Du, Yining Wang, Aarti Singh
- f-GANs in an Information Geometric Nutshell Richard Nock, Zac Cranko, Aditya K. Menon, Lizhen Qu, Robert C. Williamson
- Toward Multimodal Image-to-Image Translation Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A. Efros, Oliver Wang, Eli Shechtman
- Mixture-Rank Matrix Approximation for Collaborative Filtering Dongsheng Li, Chao Chen, Wei Liu, Tun Lu, Ning Gu, Stephen Chu
- Continuous DR-submodular Maximization: Structure and Algorithms An Bian, Kfir Levy, Andreas Krause, Joachim M. Buhmann
- Learning with Average Top-k Loss Yanbo Fan, Siwei Lyu, Yiming Ying, Baogang Hu
- Learning multiple visual domains with residual adapters Sylvestre-Alvise Rebuffi, Hakan Bilen, Andrea Vedaldi
- Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions Ryan J. Tibshirani
- Learning Spherical Convolution for Fast Features from 360° Imagery Yu-Chuan Su, Kristen Grauman
- MarrNet: 3D Shape Reconstruction via 2.5D Sketches Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, Josh Tenenbaum
- Multimodal Learning and Reasoning for Visual Question Answering Ilija Ilievski, Jiashi Feng
- Adversarial Surrogate Losses for Ordinal Regression Rizal Fathony, Mohammad Ali Bashiri, Brian Ziebart
- Hypothesis Transfer Learning via Transformation Functions Simon S. Du, Jayanth Koushik, Aarti Singh, Barnabas Poczos
- Controllable Invariance through Adversarial Feature Learning Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig
- Convergence Analysis of Two-layer Neural Networks with ReLU Activation Yuanzhi Li, Yang Yuan
- Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization Tomoya Murata, Taiji Suzuki
- Langevin Dynamics with Continuous Tempering for Training Deep Neural Networks Nanyang Ye, Zhanxing Zhu, Rafal Mantiuk
- Efficient Online Linear Optimization with Approximation Algorithms Dan Garber
- Geometric Descent Method for Convex Composite Minimization Shixiang Chen, Shiqian Ma, Wei Liu
- Diffusion Approximations for Online Principal Component Estimation and Global Convergence Chris Junchi Li, Mengdi Wang, Han Liu, Tong Zhang
- Avoiding Discrimination through Causal Reasoning Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing, Bernhard Schölkopf
- Nonparametric Online Regression while Learning the Metric Ilja Kuzborskij, Nicolò Cesa-Bianchi
- Recycling Privileged Learning and Distribution Matching for Fairness Novi Quadrianto, Viktoriia Sharmanska
- Safe and Nested Subgame Solving for Imperfect-Information Games Noam Brown, Tuomas Sandholm
- Unsupervised Image-to-Image Translation Networks Ming-Yu Liu, Thomas Breuel, Jan Kautz
- Coded Distributed Computing for Inverse Problems Yaoqing Yang, Pulkit Grover, Soummya Kar
- A Screening Rule for l1-Regularized Ising Model Estimation Zhaobin Kuang, Sinong Geng, David Page
- Improved Dynamic Regret for Non-degenerate Functions Lijun Zhang, Tianbao Yang, Jinfeng Yi, Jing Rong, Zhi-Hua Zhou
- Learning Efficient Object Detection Models with Knowledge Distillation Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, Manmohan Chandraker
- One-Sided Unsupervised Domain Mapping Sagie Benaim, Lior Wolf
- Deep Mean-Shift Priors for Image Restoration Siavash Arjomand Bigdeli, Matthias Zwicker, Paolo Favaro, Meiguang Jin
- Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees Francesco Locatello, Michael Tschannen, Gunnar Raetsch, Martin Jaggi
- A New Theory for Matrix Completion Guangcan Liu, Qingshan Liu, Xiaotong Yuan
- Robust Hypothesis Test for Nonlinear Effect with Gaussian Processes Jeremiah Liu, Brent Coull
- Lower bounds on the robustness to adversarial perturbations Jonathan Peck, Joris Roels, Bart Goossens, Yvan Saeys
- Minimizing a Submodular Function from Samples Eric Balkanski, Yaron Singer
- Introspective Classification with Convolutional Nets Long Jin, Justin Lazarow, Zhuowen Tu
- Label Distribution Learning Forests Wei Shen, KAI ZHAO, Yilu Guo, Alan L. Yuille
- Unsupervised learning of object frames by dense equivariant image labelling James Thewlis, Hakan Bilen, Andrea Vedaldi
- Compression-aware Training of Deep Networks Jose M. Alvarez, Mathieu Salzmann
- Multiscale Semi-Markov Dynamics for Intracortical Brain-Computer Interfaces Daniel Milstein, Jason Pacheco, Leigh Hochberg, John D. Simeral, Beata Jarosiewicz, Erik Sudderth
- PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, Philip S. Yu
- Detrended Partial Cross Correlation for Brain Connectivity Analysis Jaime Ide, Fábio Cappabianco, Fabio Faria, Chiang-shan R. Li
- Contrastive Learning for Image Captioning Bo Dai, Dahua Lin
- Safe Model-based Reinforcement Learning with Stability Guarantees Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, Andreas Krause
- Online multiclass boosting Young Hun Jung, Jack Goetz, Ambuj Tewari
- Matching on Balanced Nonlinear Representations for Treatment Effects Estimation Sheng Li, Yun Fu
- Learning Overcomplete HMMs Vatsal Sharan, Sham M. Kakade, Percy S. Liang, Gregory Valiant
- GP CaKe: Effective brain connectivity with causal kernels Luca Ambrogioni, Max Hinne, Marcel Van Gerven, Eric Maris
- Decoupling "when to update" from "how to update" Eran Malach, Shai Shalev-Shwartz
- Self-Normalizing Neural Networks Günter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter
- Learning to Pivot with Adversarial Networks Gilles Louppe, Michael Kagan, Kyle Cranmer
- SchNet: A continuous-filter convolutional neural network for modeling quantum interactions Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Robert Müller
- Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples Haw-Shiuan Chang, Erik Learned-Miller, Andrew McCallum
- Differentiable Learning of Submodular Models Josip Djolonga, Andreas Krause
- Inductive Representation Learning on Large Graphs Will Hamilton, Zhitao Ying, Jure Leskovec
- Subset Selection and Summarization in Sequential Data Ehsan Elhamifar, M. Clara De Paolis Kaluza
- Question Asking as Program Generation Anselm Rothe, Brenden M. Lake, Todd Gureckis
- Revisiting Perceptron: Efficient and Label-Optimal Learning of Halfspaces Songbai Yan, Chicheng Zhang
- Gradient Descent Can Take Exponential Time to Escape Saddle Points Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Aarti Singh, Barnabas Poczos
- Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction Kristofer Bouchard, Alejandro Bujan, Farbod Roosta-Khorasani, Shashanka Ubaru, Mr. Prabhat, Antoine Snijders, Jian-Hua Mao, Edward Chang, Michael W. Mahoney, Sharmodeep Bhattacharya
- One-Shot Imitation Learning Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter Abbeel, Wojciech Zaremba
- Learning the Morphology of Brain Signals Using Alpha-Stable Convolutional Sparse Coding Mainak Jas, Tom Dupré la Tour, Umut Simsekli, Alexandre Gramfort
- Integration Methods and Optimization Algorithms Damien Scieur, Vincent Roulet, Francis Bach, Alexandre d'Aspremont
- Sharpness, Restart and Acceleration Vincent Roulet, Alexandre d'Aspremont
- Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition Naoya Takeishi, Yoshinobu Kawahara, Takehisa Yairi
- Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte, Luca Benini, Luc V. Gool
- Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data Stéphanie ALLASSONNIERE, Juliette Chevallier, Stephane Oudard
- Improving Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms and Its Applications Qinshi Wang, Wei Chen
- Predictive-State Decoders: Encoding the Future into Recurrent Networks Arun Venkatraman, Nicholas Rhinehart, Wen Sun, Lerrel Pinto, Martial Hebert, Byron Boots, Kris Kitani, J. Bagnell
- Optimistic posterior sampling for reinforcement learning: worst-case regret bounds Shipra Agrawal, Randy Jia
- Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results Antti Tarvainen, Harri Valpola
- Matching neural paths: transfer from recognition to correspondence search Nikolay Savinov, Lubor Ladicky, Marc Pollefeys
- Linearly constrained Gaussian processes Carl Jidling, Niklas Wahlström, Adrian Wills, Thomas B. Schön
- Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data Joel A. Tropp, Alp Yurtsever, Madeleine Udell, Volkan Cevher
- Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, Joseph J. Lim
- Learning to Inpaint for Image Compression Mohammad Haris Baig, Vladlen Koltun, Lorenzo Torresani
- Adaptive Bayesian Sampling with Monte Carlo EM Anirban Roychowdhury, Srinivasan Parthasarathy
- ADMM without a Fixed Penalty Parameter: Faster Convergence with New Adaptive Penalization Yi Xu, Mingrui Liu, Qihang Lin, Tianbao Yang
- Shape and Material from Sound Zhoutong Zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Josh Tenenbaum, Bill Freeman
- Flexible statistical inference for mechanistic models of neural dynamics Jan-Matthis Lueckmann, Pedro J. Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnenmacher, Jakob H. Macke
- Online Prediction with Selfish Experts Tim Roughgarden, Okke Schrijvers
- Tensor Biclustering Soheil Feizi, Hamid Javadi, David Tse
- DPSCREEN: Dynamic Personalized Screening Kartik Ahuja, William Zame, Mihaela van der Schaar
- Learning Unknown Markov Decision Processes: A Thompson Sampling Approach Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, Rahul Jain
- Testing and Learning on Distributions with Symmetric Noise Invariance Ho Chung Law, Christopher Yau, Dino Sejdinovic
- A Dirichlet Mixture Model of Hawkes Processes for Event Sequence Clustering Hongteng Xu, Hongyuan Zha
- Deanonymization in the Bitcoin P2P Network Giulia Fanti, Pramod Viswanath
- Accelerated consensus via Min-Sum Splitting Patrick Rebeschini, Sekhar C. Tatikonda
- Generalized Linear Model Regression under Distance-to-set Penalties Jason Xu, Eric Chi, Kenneth Lange
- Adaptive stimulus selection for optimizing neural population responses Benjamin Cowley, Ryan Williamson, Katerina Clemens, Matthew Smith, Byron M. Yu
- Nonbacktracking Bounds on the Influence in Independent Cascade Models Emmanuel Abbe, Sanjeev Kulkarni, Eun Jee Lee
- Learning with Feature Evolvable Streams Bo-Jian Hou, Lijun Zhang, Zhi-Hua Zhou
- Online Convex Optimization with Stochastic Constraints Hao Yu, Michael Neely, Xiaohan Wei
- Max-Margin Invariant Features from Transformed Unlabelled Data Dipan Pal, Ashwin Kannan, Gautam Arakalgud, Marios Savvides
- Regularized Modal Regression with Applications in Cognitive Impairment Prediction Xiaoqian Wang, Hong Chen, Weidong Cai, Dinggang Shen, Heng Huang
- Translation Synchronization via Truncated Least Squares Xiangru Huang, Zhenxiao Liang, Chandrajit Bajaj, Qixing Huang
- From which world is your graph Cheng Li, Felix MF Wong, Zhenming Liu, Varun Kanade
- A New Alternating Direction Method for Linear Programming Sinong Wang, Ness Shroff
- Regret Analysis for Continuous Dueling Bandit Wataru Kumagai
- Best Response Regression Omer Ben Porat, Moshe Tennenholtz
- TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, Hai Li
- Learning Affinity via Spatial Propagation Networks Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong, Ming-Hsuan Yang, Jan Kautz
- Linear regression without correspondence Daniel J. Hsu, Kevin Shi, Xiaorui Sun
- NeuralFDR: Learning Discovery Thresholds from Hypothesis Features Fei Xia, Martin J. Zhang, James Y. Zou, David Tse
- Cost efficient gradient boosting Sven Peter, Ferran Diego, Fred A. Hamprecht, Boaz Nadler
- Probabilistic Rule Realization and Selection Haizi Yu, Tianxi Li, Lav R. Varshney
- Nearest-Neighbor Sample Compression: Efficiency, Consistency, Infinite Dimensions Aryeh Kontorovich, Sivan Sabato, Roi Weiss
- A Scale Free Algorithm for Stochastic Bandits with Bounded Kurtosis Tor Lattimore
- Learning Multiple Tasks with Multilinear Relationship Networks Mingsheng Long, ZHANGJIE CAO, Jianmin Wang, Philip S. Yu
- Deep Hyperalignment Muhammad Yousefnezhad, Daoqiang Zhang
- Online to Offline Conversions, Universality and Adaptive Minibatch Sizes Kfir Levy
- Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure Alberto Bietti, Julien Mairal
- Deep Learning with Topological Signatures Christoph Hofer, Roland Kwitt, Marc Niethammer, Andreas Uhl
- Predicting User Activity Level In Point Processes With Mass Transport Equation Yichen Wang, Xiaojing Ye, Hongyuan Zha, Le Song
- Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues Noga Alon, Moshe Babaioff, Yannai A. Gonczarowski, Yishay Mansour, Shay Moran, Amir Yehudayoff
- Deep Dynamic Poisson Factorization Model ChengYue Gong, win-bin huang
- Positive-Unlabeled Learning with Non-Negative Risk Estimator Ryuichi Kiryo, Gang Niu, Marthinus C. du Plessis, Masashi Sugiyama
- Optimal Sample Complexity of M-wise Data for Top-K Ranking Minje Jang, Sunghyun Kim, Changho Suh, Sewoong Oh
- Reliable Decision Support using Counterfactual Models Peter Schulam, Suchi Saria
- QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, Milan Vojnovic
- Convergent Block Coordinate Descent for Training Tikhonov Regularized Deep Neural Networks Ziming Zhang, Matthew Brand
- Train longer, generalize better: closing the generalization gap in large batch training of neural networks Elad Hoffer, Itay Hubara, Daniel Soudry
- Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal, William Constable, Oguz Elibol, Scott Gray, Stewart Hall, Luke Hornof, Amir Khosrowshahi, Carey Kloss, Ruby J. Pai, Naveen Rao
- Model evidence from nonequilibrium simulations Michael Habeck
- Minimal Exploration in Structured Stochastic Bandits Richard Combes, Stefan Magureanu, Alexandre Proutiere
- Learned D-AMP: Principled Neural Network based Compressive Image Recovery Chris Metzler, Ali Mousavi, Richard Baraniuk
- Deliberation Networks: Sequence Generation Beyond One-Pass Decoding Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin, Nenghai Yu, Tie-Yan Liu
- Adaptive Clustering through Semidefinite Programming Martin Royer
- Log-normality and Skewness of Estimated State/Action Values in Reinforcement Learning Liangpeng Zhang, Ke Tang, Xin Yao
- Repeated Inverse Reinforcement Learning Kareem Amin, Nan Jiang, Satinder Singh
- The Numerics of GANs Lars Mescheder, Sebastian Nowozin, Andreas Geiger
- Practical Bayesian Optimization for Model Fitting with Bayesian Adaptive Direct Search Luigi Acerbi, Wei Ji
- Learning Chordal Markov Networks via Branch and Bound Kari Rantanen, Antti Hyttinen, Matti Järvisalo
- Revenue Optimization with Approximate Bid Predictions Andres Munoz, Sergei Vassilvitskii
- Solving Most Systems of Random Quadratic Equations Gang Wang, Georgios Giannakis, Yousef Saad, Jie Chen
- Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data Wei-Ning Hsu, Yu Zhang, James Glass
- Lookahead Bayesian Optimization with Inequality Constraints Remi Lam, Karen Willcox
- Hierarchical Methods of Moments Matteo Ruffini, Guillaume Rabusseau, Borja Balle
- Interpretable and Globally Optimal Prediction for Textual Grounding using Image Concepts Raymond Yeh, Jinjun Xiong, Wen-Mei Hwu, Minh Do, Alexander Schwing
- Revisit Fuzzy Neural Network: Demystifying Batch Normalization and ReLU with Generalized Hamming Network Lixin Fan
- Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Optimization Pan Xu, Jian Ma, Quanquan Gu
- Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models Sergey Ioffe
- Generating steganographic images via adversarial training Jamie Hayes, George Danezis
- Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration Jason Altschuler, Jonathan Weed, Philippe Rigollet
- PixelGAN Autoencoders Alireza Makhzani, Brendan J. Frey
- Consistent Multitask Learning with Nonlinear Output Relations Carlo Ciliberto, Alessandro Rudi, Lorenzo Rosasco, Massimiliano Pontil
- Alternating minimization for dictionary learning with random initialization Niladri Chatterji, Peter L. Bartlett
- Learning ReLUs via Gradient Descent Mahdi Soltanolkotabi
- Stabilizing Training of Generative Adversarial Networks through Regularization Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, Thomas Hofmann
- Expectation Propagation with Stochastic Kinetic Model in Complex Interaction Systems Le Fang, Fan Yang, Wen Dong, Tong Guan, Chunming Qiao
- Data-Efficient Reinforcement Learning in Continuous State-Action Gaussian-POMDPs Rowan McAllister, Carl Edward Rasmussen
- Compatible Reward Inverse Reinforcement Learning Alberto Maria Metelli, Matteo Pirotta, Marcello Restelli
- First-Order Adaptive Sample Size Methods to Reduce Complexity of Empirical Risk Minimization Aryan Mokhtari, Alejandro Ribeiro
- Hiding Images in Plain Sight: Deep Steganography Shumeet Baluja
- Neural Program Meta-Induction Jacob Devlin, Rudy R. Bunel, Rishabh Singh, Matthew Hausknecht, Pushmeet Kohli
- Bayesian Dyadic Trees and Histograms for Regression Stéphanie van der Pas, Veronika Rockova
- A graph-theoretic approach to multitasking Noga Alon, Daniel Reichman, Igor Shinkar, Tal Wagner, Sebastian Musslick, Jonathan D. Cohen, Tom Griffiths, Biswadip dey, Kayhan Ozcimder
- Consistent Robust Regression Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, Purushottam Kar
- Natural Value Approximators: Learning when to Trust Past Estimates Zhongwen Xu, Joseph Modayil, Hado P. van Hasselt, Andre Barreto, David Silver, Tom Schaul
- Bandits Dueling on Partially Ordered Sets Julien Audiffren, Liva Ralaivola
- Elementary Symmetric Polynomials for Optimal Experimental Design Zelda E. Mariet, Suvrit Sra
- Emergence of Language with Multi-agent Games: Learning to Communicate with Sequences of Symbols Serhii Havrylov, Ivan Titov
- Training Deep Networks without Learning Rates Through Coin Betting Francesco Orabona, Tatiana Tommasi
- Pixels to Graphs by Associative Embedding Alejandro Newell, Jia Deng
- Runtime Neural Pruning Ji Lin, Yongming Rao, Jiwen Lu, Jie Zhou
- Eigenvalue Decay Implies Polynomial-Time Learnability for Neural Networks Surbhi Goel, Adam Klivans
- MMD GAN: Towards Deeper Understanding of Moment Matching Network Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barnabas Poczos
- The Reversible Residual Network: Backpropagation Without Storing Activations Aidan N. Gomez, Mengye Ren, Raquel Urtasun, Roger B. Grosse
- Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe Quentin Berthet, Vianney Perchet
- Zap Q-Learning Adithya M Devraj, Sean Meyn
- Expectation Propagation for t-Exponential Family Using q-Algebra Futoshi Futami, Issei Sato, Masashi Sugiyama
- Few-Shot Learning Through an Information Retrieval Lens Eleni Triantafillou, Richard Zemel, Raquel Urtasun
- Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation Matthias Hein, Maksym Andriushchenko
- Associative Embedding: End-to-End Learning for Joint Detection and Grouping Alejandro Newell, Zhiao Huang, Jia Deng
- Practical Locally Private Heavy Hitters Raef Bassily, kobbi nissim, Uri Stemmer, Abhradeep Guha Thakurta
- Large-Scale Quadratically Constrained Quadratic Program via Low-Discrepancy Sequences Kinjal Basu, Ankan Saha, Shaunak Chatterjee
- Inhomogeneous Hypergraph Clustering with Applications Pan Li, Olgica Milenkovic
- Differentiable Learning of Logical Rules for Knowledge Base Reasoning Fan Yang, Zhilin Yang, William W. Cohen
- Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks
- Masked Autoregressive Flow for Density Estimation George Papamakarios, Iain Murray, Theo Pavlakou
- Non-convex Finite-Sum Optimization Via SCSG Methods Lihua Lei, Cheng Ju, Jianbo Chen, Michael I. Jordan
- Beyond normality: Learning sparse probabilistic graphical models in the non-Gaussian setting Rebecca Morrison, Ricardo Baptista, Youssef Marzouk
- An inner-loop free solution to inverse problems using deep neural networks Kai Fan, Qi Wei, Lawrence Carin, Katherine A. Heller
- OnACID: Online Analysis of Calcium Imaging Data in Real Time Andrea Giovannucci, Johannes Friedrich, Matt Kaufman, Anne Churchland, Dmitri Chklovskii, Liam Paninski, Eftychios A. Pnevmatikakis
- Collaborative PAC Learning Avrim Blum, Nika Haghtalab, Ariel D. Procaccia, Mingda Qiao
- Fast Black-box Variational Inference through Stochastic Trust-Region Optimization Jeffrey Regier, Michael I. Jordan, Jon McAuliffe
- Scalable Demand-Aware Recommendation Jinfeng Yi, Cho-Jui Hsieh, Kush R. Varshney, Lijun Zhang, Yao Li
- SGD Learns the Conjugate Kernel Class of the Network Amit Daniely
- Noise-Tolerant Interactive Learning Using Pairwise Comparisons Yichong Xu, Hongyang Zhang, Kyle Miller, Aarti Singh, Artur Dubrawski
- Analyzing Hidden Representations in End-to-End Automatic Speech Recognition Systems Yonatan Belinkov, James Glass
- Generative Local Metric Learning for Kernel Regression Yung-Kyun Noh, Masashi Sugiyama, Kee-Eung Kim, Frank Park, Daniel D. Lee
- Information Theoretic Properties of Markov Random Fields, and their Algorithmic Applications Linus Hamilton, Frederic Koehler, Ankur Moitra
- Fitting Low-Rank Tensors in Constant Time Kohei Hayashi, Yuichi Yoshida
- Deep Supervised Discrete Hashing Qi Li, Zhenan Sun, Ran He, Tieniu Tan
- Using Options and Covariance Testing for Long Horizon Off-Policy Policy Evaluation Zhaohan Guo, Philip S. Thomas, Emma Brunskill
- How regularization affects the critical points in linear networks Amirhossein Taghvaei, Jin W. Kim, Prashant Mehta
- Fisher GAN Youssef Mroueh, Tom Sercu
- Information-theoretic analysis of generalization capability of learning algorithms Aolin Xu, Maxim Raginsky
- Sparse Approximate Conic Hulls Greg Van Buskirk, Benjamin Raichel, Nicholas Ruozzi
- Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems Alyson K. Fletcher, Mojtaba Sahraee-Ardakan, Sundeep Rangan, Philip Schniter
- Toward Goal-Driven Neural Network Models for the Rodent Whisker-Trigeminal System Chengxu Zhuang, Jonas Kubilius, Mitra JZ Hartmann, Daniel L. Yamins
- Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, Steven Z. Wu
- EX2: Exploration with Exemplar Models for Deep Reinforcement Learning Justin Fu, John Co-Reyes, Sergey Levine
- Multitask Spectral Learning of Weighted Automata Guillaume Rabusseau, Borja Balle, Joelle Pineau
- Multi-way Interacting Regression via Factorization Machines Mikhail Yurochkin, XuanLong Nguyen, nikolaos Vasiloglou
- Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network Wengong Jin, Connor Coley, Regina Barzilay, Tommi Jaakkola
- Practical Data-Dependent Metric Compression with Provable Guarantees Piotr Indyk, Ilya Razenshteyn, Tal Wagner
- REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models George Tucker, Andriy Mnih, Chris J. Maddison, John Lawson, Jascha Sohl-Dickstein
- Nonlinear random matrix theory for deep learning Jeffrey Pennington, Pratik Worah
- Parallel Streaming Wasserstein Barycenters Matthew Staib, Sebastian Claici, Justin M. Solomon, Stefanie Jegelka
- ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games Yuandong Tian, Qucheng Gong, Wenling Shang, Yuxin Wu, C. Lawrence Zitnick
- Dual Discriminator Generative Adversarial Nets Tu Nguyen, Trung Le, Hung Vu, Dinh Phung
- Dynamic Revenue Sharing Santiago Balseiro, Max Lin, Vahab Mirrokni, Renato Leme, IIIS Song Zuo
- Decomposition-Invariant Conditional Gradient for General Polytopes with Line Search Mohammad Ali Bashiri, Xinhua Zhang
- VAIN: Attentional Multi-agent Predictive Modeling Yedid Hoshen
- An Empirical Bayes Approach to Optimizing Machine Learning Algorithms James McInerney
- Differentially Private Empirical Risk Minimization Revisited: Faster and More General Di Wang, Minwei Ye, Jinhui Xu
- Variational Inference via \chi Upper Bound Minimization Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, David Blei
- On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning Xingguo Li, Lin Yang, Jason Ge, Jarvis Haupt, Tong Zhang, Tuo Zhao
- #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schulman, Filip DeTurck, Pieter Abbeel
- An Empirical Study on The Properties of Random Bases for Kernel Methods Maximilian Alber, Pieter-Jan Kindermans, Kristof Schütt, Klaus-Robert Müller, Fei Sha
- Bridging the Gap Between Value and Policy Based Reinforcement Learning Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans
- Premise Selection for Theorem Proving by Deep Graph Embedding Mingzhe Wang, Yihe Tang, Jian Wang, Jia Deng
- A Bayesian Data Augmentation Approach for Learning Deep Models Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, Ian Reid
- Principles of Riemannian Geometry in Neural Networks Michael Hauser, Asok Ray
- Cold-Start Reinforcement Learning with Softmax Policy Gradient Nan Ding, Radu Soricut
- Online Dynamic Programming Holakou Rahmanian, Manfred K. Warmuth
- Alternating Estimation for Structured High-Dimensional Multi-Response Models Sheng Chen, Arindam Banerjee
- Convolutional Gaussian Processes Mark van der Wilk, Carl Edward Rasmussen, James Hensman
- Estimation of the covariance structure of heavy-tailed distributions Xiaohan Wei, Stanislav Minsker
- Mean Field Residual Networks: On the Edge of Chaos Ge Yang, Samuel Schoenholz
- Decomposable Submodular Function Minimization: Discrete and Continuous Alina Ene, Huy Nguyen, László A. Végh
- Gauging Variational Inference Sung-Soo Ahn, Michael Chertkov, Jinwoo Shin
- Deep Recurrent Neural Network-Based Identification of Precursor microRNAs Seunghyun Park, Seonwoo Min, Hyun-Soo Choi, Sungroh Yoon
- Robust Estimation of Neural Signals in Calcium Imaging Hakan Inan, Murat A. Erdogdu, Mark Schnitzer
- State Aware Imitation Learning Yannick Schroecker, Charles L. Isbell
- Beyond Parity: Fairness Objectives for Collaborative Filtering Sirui Yao, Bert Huang
- A PAC-Bayesian Analysis of Randomized Learning with Application to Stochastic Gradient Descent Ben London
- Fully Decentralized Policies for Multi-Agent Systems: An Information Theoretic Approach Roel Dobbe, David Fridovich-Keil, Claire Tomlin
- Model-Powered Conditional Independence Test Rajat Sen, Ananda Theertha Suresh, Karthikeyan Shanmugam, Alexandros G. Dimakis, Sanjay Shakkottai
- Deep Voice 2: Multi-Speaker Neural Text-to-Speech Andrew Gibiansky, Sercan Arik, Gregory Diamos, John Miller, Kainan Peng, Wei Ping, Jonathan Raiman, Yanqi Zhou
- Variance-based Regularization with Convex Objectives Hongseok Namkoong, John C. Duchi
- Deep Lattice Networks and Partial Monotonic Functions Seungil You, David Ding, Kevin Canini, Jan Pfeifer, Maya Gupta
- Continual Learning with Deep Generative Replay Hanul Shin, Jung Kwon Lee, Jaehong Kim, Jiwon Kim
- AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms Marco Cusumano-Towner, Vikash K. Mansinghka
- Learning Causal Structures Using Regression Invariance AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, Kun Zhang
- Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback Zheng Wen, Branislav Kveton, Michal Valko, Sharan Vaswani
- Near Minimax Optimal Players for the Finite-Time 3-Expert Prediction Problem Yasin Abbasi, Peter L. Bartlett, Victor Gabillon
- Reinforcement Learning under Model Mismatch Aurko Roy, Huan Xu, Sebastian Pokutta
- Hierarchical Attentive Recurrent Tracking Adam Kosiorek, Alex Bewley, Ingmar Posner
- Tomography of the London Underground: a Scalable Model for Origin-Destination Data Nicolò Colombo, Ricardo Silva, Soong Moon Kang
- Rotting Bandits Nir Levine, Koby Crammer, Shie Mannor
- Unbiased estimates for linear regression via volume sampling Michal Derezinski, Manfred K. Warmuth
- Approximation Bounds for Hierarchical Clustering: Average Linkage, Bisecting K-means, and Local Search Benjamin Moseley, Joshua Wang
- Adaptive Accelerated Gradient Converging Method under H\"{o}lderian Error Bound Condition Mingrui Liu, Tianbao Yang
- Stein Variational Gradient Descent as Gradient Flow Qiang Liu
- Partial Hard Thresholding: Towards A Principled Analysis of Support Recovery Jie Shen, Ping Li
- Shallow Updates for Deep Reinforcement Learning Nir Levine, Tom Zahavy, Daniel J. Mankowitz, Aviv Tamar, Shie Mannor
- LightGBM: A Highly Efficient Gradient Boosting Decision Tree Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu
- Adversarial Ranking for Language Generation Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, Ming-ting Sun
- Regret Minimization in MDPs with Options without Prior Knowledge Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, Emma Brunskill
- Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee Alireza Aghasi, Afshin Abdi, Nam Nguyen, Justin Romberg
- Graph Matching via Multiplicative Update Algorithm Bo Jiang, Jin Tang, Chris Ding, Yihong Gong, Bin Luo
- Dynamic Importance Sampling for Anytime Bounds of the Partition Function Qi Lou, Rina Dechter, Alexander T. Ihler
- Is the Bellman residual a bad proxy? Matthieu Geist, Bilal Piot, Olivier Pietquin
- Generalization Properties of Learning with Random Features Alessandro Rudi, Lorenzo Rosasco
- Differentially private Bayesian learning on distributed data Mikko Heikkilä, Eemil Lagerspetz, Samuel Kaski, Kana Shimizu, Sasu Tarkoma, Antti Honkela
- Learning to Compose Domain-Specific Transformations for Data Augmentation Alexander J. Ratner, Henry Ehrenberg, Zeshan Hussain, Jared Dunnmon, Christopher Ré
- Wasserstein Learning of Deep Generative Point Process Models SHUAI XIAO, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, Hongyuan Zha
- Ensemble Sampling Xiuyuan Lu, Benjamin Van Roy
- Language Modeling with Recurrent Highway Hypernetworks Joseph Suarez
- Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter Yi Xu, Qihang Lin, Tianbao Yang
- Bayesian Compression for Deep Learning Christos Louizos, Karen Ullrich, Max Welling
- Streaming Sparse Gaussian Process Approximations Thang D. Bui, Cuong Nguyen, Richard E. Turner
- VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning Akash Srivastava, Lazar Valkoz, Chris Russell, Michael U. Gutmann, Charles Sutton
- Sparse Embedded k-Means Clustering Weiwei Liu, Xiaobo Shen, Ivor Tsang
- Dynamic-Depth Context Tree Weighting Joao V. Messias, Shimon Whiteson
- A Regularized Framework for Sparse and Structured Neural Attention Vlad Niculae, Mathieu Blondel
- Multi-output Polynomial Networks and Factorization Machines Mathieu Blondel, Vlad Niculae, Takuma Otsuka, Naonori Ueda
- Clustering Billions of Reads for DNA Data Storage Cyrus Rashtchian, Konstantin Makarychev, Miklos Racz, Siena Ang, Djordje Jevdjic, Sergey Yekhanin, Luis Ceze, Karin Strauss
- Multi-Objective Non-parametric Sequential Prediction Guy Uziel, Ran El-Yaniv
- A Universal Analysis of Large-Scale Regularized Least Squares Solutions Ashkan Panahi, Babak Hassibi
- Deep Sets Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R. Salakhutdinov, Alexander J. Smola
- ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Ebrahimi Kahou, Mr. Prabhat, Chris Pal
- Process-constrained batch Bayesian optimisation Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin, Alessandra Sutti, Thomas Dorin, Murray Height, Paul Sanders, Svetha Venkatesh
- Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes
- Spherical convolutions and their application in molecular modelling Wouter Boomsma, Jes Frellsen
- Efficient Optimization for Linear Dynamical Systems with Applications to Clustering and Sparse Coding Wenbing Huang, Mehrtash Harandi, Tong Zhang, Lijie Fan, Fuchun Sun, Junzhou Huang
- On Optimal Generalizability in Parametric Learning Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, Vahid Tarokh
- Near Optimal Sketching of Low-Rank Tensor Regression Xingguo Li, Jarvis Haupt, David Woodruff
- Tractability in Structured Probability Spaces Arthur Choi, Yujia Shen, Adnan Darwiche
- Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit Laurence Aitchison, Lloyd Russell, Adam M. Packer, Jinyao Yan, Philippe Castonguay, Michael Hausser, Srinivas C. Turaga
- Gaussian process based nonlinear latent structure discovery in multivariate spike train data Anqi Wu, Nicholas G. Roy, Stephen Keeley, Jonathan W. Pillow
- Neural system identification for large populations separating “what” and “where” David Klindt, Alexander S. Ecker, Thomas Euler, Matthias Bethge
- Certified Defenses for Data Poisoning Attacks Jacob Steinhardt, Pang Wei W. Koh, Percy S. Liang
- Eigen-Distortions of Hierarchical Representations Alexander Berardino, Valero Laparra, Johannes Ballé, Eero Simoncelli
- Limitations on Variance-Reduction and Acceleration Schemes for Finite Sums Optimization Yossi Arjevani
- Unsupervised Sequence Classification using Sequential Output Statistics Yu Liu, Jianshu Chen, Li Deng
- Subset Selection under Noise Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, Zhi-Hua Zhou
- Collecting Telemetry Data Privately Bolin Ding, Janardhan Kulkarni, Sergey Yekhanin
- Concrete Dropout Yarin Gal, Jiri Hron, Alex Kendall
- Adaptive Batch Size for Safe Policy Gradients Matteo Papini, Matteo Pirotta, Marcello Restelli
- A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning Marco Fraccaro, Simon Kamronn, Ulrich Paquet, Ole Winther
- PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference Jonathan Huggins, Ryan P. Adams, Tamara Broderick
- Bayesian GAN Yunus Saatci, Andrew G. Wilson
- Off-policy evaluation for slate recommendation Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John Langford, Damien Jose, Imed Zitouni
- A multi-agent reinforcement learning model of common-pool resource appropriation Julien Pérolat, Joel Z. Leibo, Vinicius Zambaldi, Charles Beattie, Karl Tuyls, Thore Graepel
- On the Optimization Landscape of Tensor Decompositions Rong Ge, Tengyu Ma
- High-Order Attention Models for Visual Question Answering Idan Schwartz, Alexander Schwing, Tamir Hazan
- Sparse convolutional coding for neuronal assembly detection Sven Peter, Elke Kirschbaum, Martin Both, Lee Campbell, Brandon Harvey, Conor Heins, Daniel Durstewitz, Ferran Diego, Fred A. Hamprecht
- Quantifying how much sensory information in a neural code is relevant for behavior Giuseppe Pica, Eugenio Piasini, Houman Safaai, Caroline Runyan, Christopher Harvey, Mathew Diamond, Christoph Kayser, Tommaso Fellin, Stefano Panzeri
- Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks Federico Monti, Michael Bronstein, Xavier Bresson
- Reducing Reparameterization Gradient Variance Andrew Miller, Nick Foti, Alexander D'Amour, Ryan P. Adams
- Visual Reference Resolution using Attention Memory for Visual Dialog Paul Hongsuck Seo, Andreas Lehrmann, Bohyung Han, Leonid Sigal
- Joint distribution optimal transportation for domain adaptation Nicolas Courty, Rémi Flamary, Amaury Habrard, Alain Rakotomamonjy
- Multiresolution Kernel Approximation for Gaussian Process Regression Yi Ding, Risi Kondor, Jonathan Eskreis-Winkler
- Collapsed variational Bayes for Markov jump processes Boqian Zhang, Jiangwei Pan, Vinayak A. Rao
- Universal consistency and minimax rates for online Mondrian Forests Jaouad Mourtada, Stéphane Gaïffas, Erwan Scornet
- Welfare Guarantees from Data Darrell Hoy, Denis Nekipelov, Vasilis Syrgkanis
- Diving into the shallows: a computational perspective on large-scale shallow learning SIYUAN MA, Mikhail Belkin
- End-to-end Differentiable Proving Tim Rocktäschel, Sebastian Riedel
- Influence Maximization with \varepsilon-Almost Submodular Threshold Functions Qiang Li, Wei Chen, Institute of Computing Xiaoming Sun, Institute of Computing Jialin Zhang
- InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations Yunzhu Li, Jiaming Song, Stefano Ermon
- Variational Laws of Visual Attention for Dynamic Scenes Dario Zanca, Marco Gori
- Recursive Sampling for the Nystrom Method Cameron Musco, Christopher Musco
- Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning Shixiang Gu, Tim Lillicrap, Richard E. Turner, Zoubin Ghahramani, Bernhard Schölkopf, Sergey Levine
- Dynamic Routing Between Capsules Sara Sabour, Nicholas Frosst, Geoffrey E. Hinton
- Incorporating Side Information by Adaptive Convolution Di Kang, Debarun Dhar, Antoni Chan
- Conic Scan-and-Cover algorithms for nonparametric topic modeling Mikhail Yurochkin, Aritra Guha, XuanLong Nguyen
- FALKON: An Optimal Large Scale Kernel Method Alessandro Rudi, Luigi Carratino, Lorenzo Rosasco
- Structured Generative Adversarial Networks Zhijie Deng, Hao Zhang, Xiaodan Liang, Luona Yang, Shizhen Xu, Jun Zhu, Eric P. Xing
- Conservative Contextual Linear Bandits Abbas Kazerouni, Mohammad Ghavamzadeh, Yasin Abbasi, Benjamin Van Roy
- Variational Memory Addressing in Generative Models Jörg Bornschein, Andriy Mnih, Daniel Zoran, Danilo Jimenez Rezende
- On Tensor Train Rank Minimization : Statistical Efficiency and Scalable Algorithm Masaaki Imaizumi, Takanori Maehara, Kohei Hayashi
- Scalable Levy Process Priors for Spectral Kernel Learning Phillip A. Jang, Andrew Loeb, Matthew Davidow, Andrew G. Wilson
- Deep Hyperspherical Learning Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, Le Song
- Learning Deep Structured Multi-Scale Features using Attention-Gated CRFs for Contour Prediction Dan Xu, Wanli Ouyang, Xavier Alameda-Pineda, Elisa Ricci, Xiaogang Wang, Nicu Sebe
- On-the-fly Operation Batching in Dynamic Computation Graphs Graham Neubig, Yoav Goldberg, Chris Dyer
- Nonlinear Acceleration of Stochastic Algorithms Damien Scieur, Francis Bach, Alexandre d'Aspremont
- Optimized Pre-Processing for Discrimination Prevention Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, Kush R. Varshney
- YASS: Yet Another Spike Sorter Jin Hyung Lee, David E. Carlson, Hooshmand Shokri Razaghi, Weichi Yao, Georges A. Goetz, Espen Hagen, Eleanor Batty, E.J. Chichilnisky, Gaute T. Einevoll, Liam Paninski
- Independence clustering (without a matrix) Daniil Ryabko
- Fast amortized inference of neural activity from calcium imaging data with variational autoencoders Artur Speiser, Jinyao Yan, Evan W. Archer, Lars Buesing, Srinivas C. Turaga, Jakob H. Macke
- Adaptive Active Hypothesis Testing under Limited Information Fabio Cecchi, Nidhi Hegde
- Streaming Weak Submodularity: Interpreting Neural Networks on the Fly Ethan Elenberg, Alexandros G. Dimakis, Moran Feldman, Amin Karbasi
- Successor Features for Transfer in Reinforcement Learning Andre Barreto, Will Dabney, Remi Munos, Jonathan J. Hunt, Tom Schaul, Hado P. van Hasselt, David Silver
- Counterfactual Fairness Matt J. Kusner, Joshua Loftus, Chris Russell, Ricardo Silva
- Prototypical Networks for Few-shot Learning Jake Snell, Kevin Swersky, Richard Zemel
- Triple Generative Adversarial Nets Chongxuan LI, Taufik Xu, Jun Zhu, Bo Zhang
- Efficient Sublinear-Regret Algorithms for Online Sparse Linear Regression with Limited Observation Shinji Ito, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura, Ken-Ichi Kawarabayashi
- Mapping distinct timescales of functional interactions among brain networks Mali Sundaresan, Arshed Nabeel, Devarajan Sridharan
- Multi-Armed Bandits with Metric Movement Costs Tomer Koren, Roi Livni, Yishay Mansour
- Learning A Structured Optimal Bipartite Graph for Co-Clustering Feiping Nie, Xiaoqian Wang, Cheng Deng, Heng Huang
- Learning Low-Dimensional Metrics Blake Mason, Lalit Jain, Robert Nowak
- The Marginal Value of Adaptive Gradient Methods in Machine Learning Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, Benjamin Recht
- Aggressive Sampling for Multi-class to Binary Reduction with Applications to Text Classification Bikash Joshi, Massih R. Amini, Ioannis Partalas, Franck Iutzeler, Yury Maximov
- Deconvolutional Paragraph Representation Learning Yizhe Zhang, Dinghan Shen, Guoyin Wang, Zhe Gan, Ricardo Henao, Lawrence Carin
- Random Permutation Online Isotonic Regression Wojciech Kotlowski, Wouter M. Koolen, Alan Malek
- A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, karl Tuyls, Julien Perolat, David Silver, Thore Graepel
- Inverse Filtering for Hidden Markov Models Robert Mattila, Cristian Rojas, Vikram Krishnamurthy, Bo Wahlberg
- Non-parametric Structured Output Networks Andreas Lehrmann, Leonid Sigal
- Learning Active Learning from Data Ksenia Konyushkova, Raphael Sznitman, Pascal Fua
- VAE Learning via Stein Variational Gradient Descent Yuchen Pu, Zhe Gan, Ricardo Henao, Chunyuan Li, Shaobo Han, Lawrence Carin
- Reconstructing perceived faces from brain activations with deep adversarial neural decoding Yağmur Güçlütürk, Umut Güçlü, Katja Seeliger, Sander Bosch, Rob van Lier, Marcel A. J. van Gerven
- Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems Celestine Dünner, Thomas Parnell, Martin Jaggi
- Temporal Coherency based Criteria for Predicting Video Frames using Deep Multi-stage Generative Adversarial Networks Prateep Bhattacharjee, Sukhendu Das
- Sobolev Training for Neural Networks Wojciech M. Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, Razvan Pascanu
- Multi-Information Source Optimization Matthias Poloczek, Jialei Wang, Peter Frazier
- Deep Reinforcement Learning from Human Preferences Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, Dario Amodei
- On the Fine-Grained Complexity of Empirical Risk Minimization: Kernel Methods and Neural Networks Arturs Backurs, Piotr Indyk, Ludwig Schmidt
- Policy Gradient With Value Function Approximation For Collective Multiagent Planning Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau
- Adversarial Symmetric Variational Autoencoder Yuchen Pu, Weiyao Wang, Ricardo Henao, Liqun Chen, Zhe Gan, Chunyuan Li, Lawrence Carin
- Unified representation of tractography and diffusion-weighted MRI data using sparse multidimensional arrays Cesar F. Caiafa, Olaf Sporns, Andrew Saykin, Franco Pestilli
- A Minimax Optimal Algorithm for Crowdsourcing Thomas Bonald, Richard Combes
- Estimating Accuracy from Unlabeled Data: A Probabilistic Logic Approach Emmanouil Platanios, Hoifung Poon, Tom M. Mitchell, Eric J. Horvitz
- A Decomposition of Forecast Error in Prediction Markets Miro Dudik, Sebastien Lahaie, Ryan M. Rogers, Jennifer Wortman Vaughan
- Safe Adaptive Importance Sampling Sebastian U. Stich, Anant Raj, Martin Jaggi
- Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net Anirudh Goyal ALIAS PARTH GOYAL, Nan Ke, Surya Ganguli, Yoshua Bengio
- Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix Multiplication Qian Yu, Mohammad Maddah-Ali, Salman Avestimehr
- Unsupervised Learning of Disentangled Representations from Video Emily L. Denton, vighnesh Birodkar
- Federated Multi-Task Learning Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, Ameet S. Talwalkar
- Is Input Sparsity Time Possible for Kernel Low-Rank Approximation? Cameron Musco, David Woodruff
- The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities Arun Suggala, Mladen Kolar, Pradeep K. Ravikumar
- Improved Graph Laplacian via Geometric Self-Consistency Dominique Joncas, Marina Meila, James McQueen
- Dual Path Networks Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng
- Faster and Non-ergodic O(1/K) Stochastic Alternating Direction Method of Multipliers Cong Fang, Feng Cheng, Zhouchen Lin
- A Probabilistic Framework for Nonlinearities in Stochastic Neural Networks Qinliang Su, xuejun Liao, Lawrence Carin
- Distral: Robust multitask reinforcement learning Yee Teh, Victor Bapst, Wojciech M. Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas Heess, Razvan Pascanu
- Online Learning of Optimal Bidding Strategy in Repeated Multi-Commodity Auctions M. Sevi Baltaoglu, Lang Tong, Qing Zhao
- Trimmed Density Ratio Estimation Song Liu, Akiko Takeda, Taiji Suzuki, Kenji Fukumizu
- Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems Ingmar Kanitscheider, Ila Fiete
- Visual Interaction Networks: Learning a Physics Simulator from Video Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, Andrea Tacchetti
- Reconstruct & Crush Network Erinc Merdivan, Mohammad Reza Loghmani, Matthieu Geist
- Streaming Robust Submodular Maximization: A Partitioned Thresholding Approach Slobodan Mitrovic, Ilija Bogunovic, Ashkan Norouzi-Fard, Jakub M. Tarnawski, Volkan Cevher
- Simple strategies for recovering inner products from coarsely quantized random projections Ping Li, Martin Slawski
- Discovering Potential Correlations via Hypercontractivity Hyeji Kim, Weihao Gao, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
- Doubly Stochastic Variational Inference for Deep Gaussian Processes Hugh Salimbeni, Marc Deisenroth
- Ranking Data with Continuous Labels through Oriented Recursive Partitions Stéphan Clémençon, Mastane Achab
- Scalable Model Selection for Belief Networks Zhao Song, Yusuke Muraoka, Ryohei Fujimaki, Lawrence Carin
- Targeting EEG/LFP Synchrony with Neural Nets Yitong Li, michael Murias, samantha Major, geraldine Dawson, Kafui Dzirasa, Lawrence Carin, David E. Carlson
- Near-Optimal Edge Evaluation in Explicit Generalized Binomial Graphs Sanjiban Choudhury, Shervin Javdani, Siddhartha Srinivasa, Sebastian Scherer
- Non-Stationary Spectral Kernels Sami Remes, Markus Heinonen, Samuel Kaski
- Overcoming Catastrophic Forgetting by Incremental Moment Matching Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, Byoung-Tak Zhang
- Balancing information exposure in social networks Kiran Garimella, Aristides Gionis, Nikos Parotsidis, Nikolaj Tatti
- SafetyNets: Verifiable Execution of Deep Neural Networks on an Untrusted Cloud Zahra Ghodsi, Tianyu Gu, Siddharth Garg
- Query Complexity of Clustering with Side Information Arya Mazumdar, Barna Saha
- QMDP-Net: Deep Learning for Planning under Partial Observability Peter Karkus, David Hsu, Wee Sun Lee
- Robust Optimization for Non-Convex Objectives Robert S. Chen, Brendan Lucier, Yaron Singer, Vasilis Syrgkanis
- Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation Christian Borgs, Jennifer Chayes, Christina E. Lee, Devavrat Shah
- Adaptive Classification for Prediction Under a Budget Feng Nan, Venkatesh Saligrama
- Convergence rates of a partition based Bayesian multivariate density estimation method Linxi Liu, Dangna Li, Wing Hung Wong
- Affine-Invariant Online Optimization and the Low-rank Experts Problem Tomer Koren, Roi Livni
- Beyond Worst-case: A Probabilistic Analysis of Affine Policies in Dynamic Optimization Omar El Housni, Vineet Goyal
- A Unified Approach to Interpreting Model Predictions Scott M. Lundberg, Su-In Lee
- Stochastic Approximation for Canonical Correlation Analysis Raman Arora, Teodor Vanislavov Marinov, Poorya Mianjy, Nati Srebro
- Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice Jeffrey Pennington, Samuel Schoenholz, Surya Ganguli
- Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions Maria-Florina F. Balcan, Hongyang Zhang
- Scalable Variational Inference for Dynamical Systems Nico S. Gorbach, Stefan Bauer, Joachim M. Buhmann
- Context Selection for Embedding Models Liping Liu, Francisco Ruiz, Susan Athey, David Blei
- Working hard to know your neighbor's margins: Local descriptor learning loss Anastasiia Mishchuk, Dmytro Mishkin, Filip Radenovic, Jiri Matas
- Accelerated Stochastic Greedy Coordinate Descent by Soft Thresholding Projection onto Simplex Chaobing Song, Shaobo Cui, Yong Jiang, Shu-Tao Xia
- Multi-Task Learning for Contextual Bandits Aniket Anand Deshmukh, Urun Dogan, Clay Scott
- Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon Xin Dong, Shangyu Chen, Sinno Pan
- Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, Licheng Jiao
- Selective Classification for Deep Neural Networks Yonatan Geifman, Ran El-Yaniv
- Minimax Estimation of Bandable Precision Matrices Addison Hu, Sahand Negahban
- Monte-Carlo Tree Search by Best Arm Identification Emilie Kaufmann, Wouter M. Koolen
- Group Additive Structure Identification for Kernel Nonparametric Regression Chao Pan, Michael Zhu
- Fast, Sample-Efficient Algorithms for Structured Phase Retrieval Gauri Jagatap, Chinmay Hegde
- Hash Embeddings for Efficient Word Representations Dan Tito Svenstrup, Jonas Hansen, Ole Winther
- Online Learning for Multivariate Hawkes Processes Yingxiang Yang, Jalal Etesami, Niao He, Negar Kiyavash
- Maximum Margin Interval Trees Alexandre Drouin, Toby Hocking, Francois Laviolette
- DropoutNet: Addressing Cold Start in Recommender Systems Maksims Volkovs, Guangwei Yu, Tomi Poutanen
- A simple neural network module for relational reasoning Adam Santoro, David Raposo, David G. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Tim Lillicrap
- Q-LDA: Uncovering Latent Patterns in Text-based Sequential Decision Processes Jianshu Chen, Chong Wang, Lin Xiao, Ji He, Lihong Li, Li Deng
- Online Reinforcement Learning in Stochastic Games Chen-Yu Wei, Yi-Te Hong, Chi-Jen Lu
- Position-based Multiple-play Bandit Problem with Unknown Position Bias Junpei Komiyama, Junya Honda, Akiko Takeda
- Active Exploration for Learning Symbolic Representations Garrett Andersen, George Konidaris
- Clone MCMC: Parallel High-Dimensional Gaussian Gibbs Sampling Andrei-Cristian Barbos, Francois Caron, Jean-François Giovannelli, Arnaud Doucet
- Fair Clustering Through Fairlets Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii
- Polynomial time algorithms for dual volume sampling Chengtao Li, Stefanie Jegelka, Suvrit Sra
- Hindsight Experience Replay Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, Wojciech Zaremba
- Stochastic and Adversarial Online Learning without Hyperparameters Ashok Cutkosky, Kwabena A. Boahen
- Teaching Machines to Describe Images with Natural Language Feedback huan ling, Sanja Fidler
- Perturbative Black Box Variational Inference Robert Bamler, Cheng Zhang, Manfred Opper, Stephan Mandt
- GibbsNet: Iterative Adversarial Inference for Deep Graphical Models Alex M. Lamb, Devon Hjelm, Yaroslav Ganin, Joseph Paul Cohen, Aaron C. Courville, Yoshua Bengio
- PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space Charles Ruizhongtai Qi, Li Yi, Hao Su, Leonidas J. Guibas
- Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, Bohyung Han
- Learning Graph Representations with Embedding Propagation Alberto Garcia Duran, Mathias Niepert
- Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes Zhenwen Dai, Mauricio A. Álvarez, Neil Lawrence
- A-NICE-MC: Adversarial Training for MCMC Jiaming Song, Shengjia Zhao, Stefano Ermon
- Excess Risk Bounds for the Bayes Risk using Variational Inference in Latent Gaussian Models Rishit Sheth, Roni Khardon
- Real-Time Bidding with Side Information arthur flajolet, Patrick Jaillet
- Saliency-based Sequential Image Attention with Multiset Prediction Sean Welleck, Jialin Mao, Kyunghyun Cho, Zheng Zhang
- Variational Inference for Gaussian Process Models with Linear Complexity Ching-An Cheng, Byron Boots
- K-Medoids For K-Means Seeding James Newling, François Fleuret
- Identifying Outlier Arms in Multi-Armed Bandit Honglei Zhuang, Chi Wang, Yifan Wang
- Online Learning with Transductive Regret Mehryar Mohri, Scott Yang
- Riemannian approach to batch normalization Minhyung Cho, Jaehyung Lee
- Self-supervised Learning of Motion Capture Hsiao-Yu Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki
- Triangle Generative Adversarial Networks Zhe Gan, Liqun Chen, Weiyao Wang, Yuchen Pu, Yizhe Zhang, Hao Liu, Chunyuan Li, Lawrence Carin
- PRUNE: Preserving Proximity and Global Ranking for Network Embedding Yi-An Lai, Chin-Chi Hsu, Wen Hao Chen, Mi-Yen Yeh, Shou-De Lin
- Bayesian Optimization with Gradients Jian Wu, Matthias Poloczek, Andrew G. Wilson, Peter Frazier
- Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation Yuhuai Wu, Elman Mansimov, Roger B. Grosse, Shun Liao, Jimmy Ba
- Renyi Differential Privacy Mechanisms for Posterior Sampling Joseph Geumlek, Shuang Song, Kamalika Chaudhuri
- Online Learning with a Hint Ofer Dekel, arthur flajolet, Nika Haghtalab, Patrick Jaillet
- Identification of Gaussian Process State Space Models Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, James Hensman
- Robust Imitation of Diverse Behaviors Ziyu Wang, Josh S. Merel, Scott E. Reed, Nando de Freitas, Gregory Wayne, Nicolas Heess
- Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, Ji Liu
- Local Aggregative Games Vikas Garg, Tommi Jaakkola
- A Sample Complexity Measure with Applications to Learning Optimal Auctions Vasilis Syrgkanis
- Thinking Fast and Slow with Deep Learning and Tree Search Thomas Anthony, Zheng Tian, David Barber
- EEG-GRAPH: A Factor-Graph-Based Model for Capturing Spatial, Temporal, and Observational Relationships in Electroencephalograms Yogatheesan Varatharajah, Min Jin Chong, Krishnakant Saboo, Brent Berry, Benjamin Brinkmann, Gregory Worrell, Ravishankar Iyer
- Improving the Expected Improvement Algorithm Chao Qin, Diego Klabjan, Daniel Russo
- Hybrid Reward Architecture for Reinforcement Learning Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, Jeffrey Tsang
- Approximate Supermodularity Bounds for Experimental Design Luiz Chamon, Alejandro Ribeiro
- Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J. Kim, Johannes Fürnkranz
- AdaGAN: Boosting Generative Models Ilya O. Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann SIMON-GABRIEL, Bernhard Schölkopf
- Straggler Mitigation in Distributed Optimization Through Data Encoding Can Karakus, Yifan Sun, Suhas Diggavi, Wotao Yin
- Multi-View Decision Processes: The Helper-AI Problem Christos Dimitrakakis, David C. Parkes, Goran Radanovic, Paul Tylkin
- A Greedy Approach for Budgeted Maximum Inner Product Search Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, Inderjit S. Dhillon
- SVD-Softmax: Fast Softmax Approximation on Large Vocabulary Neural Networks Kyuhong Shim, Minjae Lee, Iksoo Choi, Yoonho Boo, Wonyong Sung
- Plan, Attend, Generate: Planning for Sequence-to-Sequence Models Caglar Gulcehre, Francis Dutil, Adam Trischler, Yoshua Bengio
- Task-based End-to-end Model Learning in Stochastic Optimization Priya Donti, Brandon Amos, J. Zico Kolter
- ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching Chunyuan Li, Hao Liu, Changyou Chen, Yuchen Pu, Liqun Chen, Ricardo Henao, Lawrence Carin
- Finite Sample Analysis of the GTD Policy Evaluation Algorithms in Markov Setting Yue Wang, Wei Chen, Yuting Liu, Zhi-Ming Ma, Tie-Yan Liu
- On the Complexity of Learning Neural Networks Le Song, Santosh Vempala, John Wilmes, Bo Xie
- Hierarchical Implicit Models and Likelihood-Free Variational Inference Dustin Tran, Rajesh Ranganath, David Blei
- Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference Abhishek Kumar, Prasanna Sattigeri, Tom Fletcher
- Approximation and Convergence Properties of Generative Adversarial Learning Shuang Liu, Olivier Bousquet, Kamalika Chaudhuri
- From Bayesian Sparsity to Gated Recurrent Nets Hao He, Bo Xin, Satoshi Ikehata, David Wipf
- Min-Max Propagation Christopher Srinivasa, Inmar Givoni, Siamak Ravanbakhsh, Brendan J. Frey
- What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? Alex Kendall, Yarin Gal
- Gradient descent GAN optimization is locally stable Vaishnavh Nagarajan, J. Zico Kolter
- Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks Arash Vahdat
- Dualing GANs Yujia Li, Alexander Schwing, Kuan-Chieh Wang, Richard Zemel
- Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, Wang-chun WOO
- Do Deep Neural Networks Suffer from Crowding? Anna Volokitin, Gemma Roig, Tomaso A. Poggio
- Learning from Complementary Labels Takashi Ishida, Gang Niu, Weihua Hu, Masashi Sugiyama
- Online control of the false discovery rate with decaying memory Aaditya Ramdas, Fanny Yang, Martin J. Wainwright, Michael I. Jordan
- Learning from uncertain curves: The 2-Wasserstein metric for Gaussian processes Anton Mallasto, Aasa Feragen
- Discriminative State Space Models Vitaly Kuznetsov, Mehryar Mohri
- On Fairness and Calibration Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, Kilian Q. Weinberger
- Imagination-Augmented Agents for Deep Reinforcement Learning Sébastien Racanière, Theophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, Daan Wierstra
- Extracting low-dimensional dynamics from multiple large-scale neural population recordings by learning to predict correlations Marcel Nonnenmacher, Srinivas C. Turaga, Jakob H. Macke
- Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning Christoph Dann, Tor Lattimore, Emma Brunskill
- Gradients of Generative Models for Improved Discriminative Analysis of Tandem Mass Spectra John T. Halloran, David M. Rocke
- Asynchronous Parallel Coordinate Minimization for MAP Inference Ofer Meshi, Alexander Schwing
- Multiscale Quantization for Fast Similarity Search Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N. Holtmann-Rice, David Simcha, Felix Yu
- Diverse and Accurate Image Description Using a Variational Auto-Encoder with an Additive Gaussian Encoding Space Liwei Wang, Alexander Schwing, Svetlana Lazebnik
- Improved Training of Wasserstein GANs Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron C. Courville
- Learning Populations of Parameters Kevin Tian, Weihao Kong, Gregory Valiant
- Clustering with Noisy Queries Arya Mazumdar, Barna Saha
- Higher-Order Total Variation Classes on Grids: Minimax Theory and Trend Filtering Methods Veeranjaneyulu Sadhanala, Yu-Xiang Wang, James L. Sharpnack, Ryan J. Tibshirani
- Training Quantized Nets: A Deeper Understanding Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, Tom Goldstein
- Permutation-based Causal Inference Algorithms with Interventions Yuhao Wang, Liam Solus, Karren Yang, Caroline Uhler
- Time-dependent spatially varying graphical models, with application to brain fMRI data analysis Kristjan Greenewald, Seyoung Park, Shuheng Zhou, Alexander Giessing
- Gradient Methods for Submodular Maximization Hamed Hassani, Mahdi Soltanolkotabi, Amin Karbasi
- Smooth Primal-Dual Coordinate Descent Algorithms for Nonsmooth Convex Optimization Ahmet Alacaoglu, Quoc Tran Dinh, Olivier Fercoq, Volkan Cevher
- The Importance of Communities for Learning to Influence Eric Balkanski, Nicole Immorlica, Yaron Singer
- Multiplicative Weights Update with Constant Step-Size in Congestion Games: Convergence, Limit Cycles and Chaos Gerasimos Palaiopanos, Ioannis Panageas, Georgios Piliouras
- Learning Neural Representations of Human Cognition across Many fMRI Studies Arthur Mensch, Julien Mairal, Danilo Bzdok, Bertrand Thirion, Gael Varoquaux
- A KL-LUCB algorithm for Large-Scale Crowdsourcing Ervin Tanczos, Robert Nowak, Bob Mankoff
- Collaborative Deep Learning in Fixed Topology Networks Zhanhong Jiang, Aditya Balu, Chinmay Hegde, Soumik Sarkar
- Fast-Slow Recurrent Neural Networks Asier Mujika, Florian Meier, Angelika Steger
- Learning Disentangled Representations with Semi-Supervised Deep Generative Models Siddharth Narayanaswamy, T. Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah Goodman, Pushmeet Kohli, Frank Wood, Philip Torr
- Self-Supervised Intrinsic Image Decomposition Michael Janner, Jiajun Wu, Tejas D. Kulkarni, Ilker Yildirim, Josh Tenenbaum
- Exploring Generalization in Deep Learning Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, Nati Srebro
- A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control Fanny Yang, Aaditya Ramdas, Kevin G. Jamieson, Martin J. Wainwright
- Fader Networks:Manipulating Images by Sliding Attributes Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic DENOYER, Marc'Aurelio Ranzato
- Action Centered Contextual Bandits Kristjan Greenewald, Ambuj Tewari, Susan Murphy, Predag Klasnja
- Estimating Mutual Information for Discrete-Continuous Mixtures Weihao Gao, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
- Attention is All you Need Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin
- Recurrent Ladder Networks Isabeau Prémont-Schwarz, Alexander Ilin, Tele Hao, Antti Rasmus, Rinu Boney, Harri Valpola
- Parameter-Free Online Learning via Model Selection Dylan J. Foster, Satyen Kale, Mehryar Mohri, Karthik Sridharan
- Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction Zhan Shi, Xinhua Zhang, Yaoliang Yu
- Unbounded cache model for online language modeling with open vocabulary Edouard Grave, Moustapha M. Cisse, Armand Joulin
- Predictive State Recurrent Neural Networks Carlton Downey, Ahmed Hefny, Byron Boots, Geoffrey J. Gordon, Boyue Li
- Early stopping for kernel boosting algorithms: A general analysis with localized complexities Yuting Wei, Fanny Yang, Martin J. Wainwright
- SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability Maithra Raghu, Justin Gilmer, Jason Yosinski, Jascha Sohl-Dickstein
- Convolutional Phase Retrieval Qing Qu, Yuqian Zhang, Yonina Eldar, John Wright
- Estimating High-dimensional Non-Gaussian Multiple Index Models via Stein’s Lemma Zhuoran Yang, krishnakumar balasubramanian, Princeton Zhaoran Wang, Han Liu
- Gaussian Quadrature for Kernel Features Tri Dao, Christopher M. De Sa, Christopher Ré
- Value Prediction Network Junhyuk Oh, Satinder Singh, Honglak Lee
- A Learning Error Analysis for Structured Prediction with Approximate Inference Yuanbin Wu, Man Lan, Shiliang Sun, Qi Zhang, Xuanjing Huang
- Efficient Second-Order Online Kernel Learning with Adaptive Embedding Daniele Calandriello, Alessandro Lazaric, Michal Valko
- Implicit Regularization in Matrix Factorization Suriya Gunasekar, Blake E. Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, Nati Srebro
- Optimal Shrinkage of Singular Values Under Random Data Contamination Danny Barash, Matan Gavish
- Countering Feedback Delays in Multi-Agent Learning Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Peter W. Glynn, Claire Tomlin
- Asynchronous Coordinate Descent under More Realistic Assumptions Tao Sun, Robert Hannah, Wotao Yin
- Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li
- Hierarchical Clustering Beyond the Worst-Case Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn
- Invariance and Stability of Deep Convolutional Representations Alberto Bietti, Julien Mairal
- Statistical Cost Sharing Eric Balkanski, Umar Syed, Sergei Vassilvitskii
- The Expressive Power of Neural Networks: A View from the Width Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, Liwei Wang
- Spectrally-normalized margin bounds for neural networks Peter L. Bartlett, Dylan J. Foster, Matus J. Telgarsky
- Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes Taylor W. Killian, Samuel Daulton, George Konidaris, Finale Doshi-Velez
- Population Matching Discrepancy and Applications in Deep Learning Jianfei Chen, Chongxuan LI, Yizhong Ru, Jun Zhu
- Scalable Planning with Tensorflow for Hybrid Nonlinear Domains Ga Wu, Buser Say, Scott Sanner
- Boltzmann Exploration Done Right Nicolò Cesa-Bianchi, Claudio Gentile, Gabor Lugosi, Gergely Neu
- Learned in Translation: Contextualized Word Vectors Bryan McCann, James Bradbury, Caiming Xiong, Richard Socher
- Neural Discrete Representation Learning Aaron van den Oord, Oriol Vinyals, koray kavukcuoglu
- Generalizing GANs: A Turing Perspective Roderich Gross, Yue Gu, Wei Li, Melvin Gauci
- Scalable Log Determinants for Gaussian Process Kernel Learning Kun Dong, David Eriksson, Hannes Nickisch, David Bindel, Andrew G. Wilson
- Poincaré Embeddings for Learning Hierarchical Representations Maximillian Nickel, Douwe Kiela
- Learning Combinatorial Optimization Algorithms over Graphs Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, Le Song
- Robust Conditional Probabilities Yoav Wald, Amir Globerson
- Learning with Bandit Feedback in Potential Games Amélie Heliou, Johanne Cohen, Panayotis Mertikopoulos
- Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, Igor Mordatch
- Communication-Efficient Distributed Learning of Discrete Distributions Ilias Diakonikolas, Elena Grigorescu, Jerry Li, Abhiram Natarajan, Krzysztof Onak, Ludwig Schmidt
- Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell
- When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness Chris Russell, Matt J. Kusner, Joshua Loftus, Ricardo Silva
- Matrix Norm Estimation from a Few Entries Ashish Khetan, Sewoong Oh
- Neural Networks for Efficient Bayesian Decoding of Natural Images from Retinal Neurons Nikhil Parthasarathy, Eleanor Batty, William Falcon, Thomas Rutten, Mohit Rajpal, E.J. Chichilnisky, Liam Paninski
- Causal Effect Inference with Deep Latent-Variable Models Christos Louizos, Uri Shalit, Joris M. Mooij, David Sontag, Richard Zemel, Max Welling
- Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity Asish Ghoshal, Jean Honorio
- Gradient Episodic Memory for Continual Learning David Lopez-Paz, Marc'Aurelio Ranzato
- Effective Parallelisation for Machine Learning Michael Kamp, Mario Boley, Olana Missura, Thomas Gärtner
- Semisupervised Clustering, AND-Queries and Locally Encodable Source Coding Arya Mazumdar, Soumyabrata Pal
- Clustering Stable Instances of Euclidean k-means. Aravindan Vijayaraghavan, Abhratanu Dutta, Alex Wang
- Good Semi-supervised Learning That Requires a Bad GAN Zihang Dai, Zhilin Yang, Fan Yang, William W. Cohen, Ruslan R. Salakhutdinov
- On Blackbox Backpropagation and Jacobian Sensing Krzysztof M. Choromanski, Vikas Sindhwani
- Protein Interface Prediction using Graph Convolutional Networks Alex Fout, Jonathon Byrd, Basir Shariat, Asa Ben-Hur
- Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities Michael Eickenberg, Georgios Exarchakis, Matthew Hirn, Stephane Mallat
- Towards Generalization and Simplicity in Continuous Control Aravind Rajeswaran, Kendall Lowrey, Emanuel V. Todorov, Sham M. Kakade
- Random Projection Filter Bank for Time Series Data Amir-massoud Farahmand, Sepideh Pourazarm, Daniel Nikovski
- Filtering Variational Objectives Chris J. Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Teh
- On Frank-Wolfe and Equilibrium Computation Jacob D. Abernethy, Jun-Kun Wang
- Modulating early visual processing by language Harm de Vries, Florian Strub, Jeremie Mary, Hugo Larochelle, Olivier Pietquin, Aaron C. Courville
- Learning Mixture of Gaussians with Streaming Data Aditi Raghunathan, Prateek Jain, Ravishankar Krishnawamy
- Practical Hash Functions for Similarity Estimation and Dimensionality Reduction Søren Dahlgaard, Mathias Knudsen, Mikkel Thorup
- GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter
- The Scaling Limit of High-Dimensional Online Independent Component Analysis Chuang Wang, Yue Lu
- Approximation Algorithms for \ell_0-Low Rank Approximation Karl Bringmann, Pavel Kolev, David Woodruff
- The power of absolute discounting: all-dimensional distribution estimation Moein Falahatgar, Mesrob I. Ohannessian, Alon Orlitsky, Venkatadheeraj Pichapati
- Few-Shot Adversarial Domain Adaptation Saeid Motiian, Quinn Jones, Seyed Iranmanesh, Gianfranco Doretto
- Spectral Mixture Kernels for Multi-Output Gaussian Processes Gabriel Parra, Felipe Tobar
- Neural Expectation Maximization Klaus Greff, Sjoerd van Steenkiste, Jürgen Schmidhuber
- Learning Linear Dynamical Systems via Spectral Filtering Elad Hazan, Karan Singh, Cyril Zhang
- Z-Forcing: Training Stochastic Recurrent Networks Anirudh Goyal ALIAS PARTH GOYAL, Alessandro Sordoni, Marc-Alexandre Côté, Nan Ke, Yoshua Bengio
- Learning Hierarchical Information Flow with Recurrent Neural Modules Danijar Hafner, Alexander Irpan, James Davidson, Nicolas Heess
- Neural Variational Inference and Learning in Undirected Graphical Models Volodymyr Kuleshov, Stefano Ermon
- Subspace Clustering via Tangent Cones Amin Jalali, Rebecca Willett
- The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process Hongyuan Mei, Jason M. Eisner
- Inverse Reward Design Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J. Russell, Anca Dragan
- Structured Bayesian Pruning via Log-Normal Multiplicative Noise Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, Dmitry P. Vetrov
- Attend and Predict: Understanding Gene Regulation by Selective Attention on Chromatin Ritambhara Singh, Jack Lanchantin, Arshdeep Sekhon, Yanjun Qi
- Acceleration and Averaging in Stochastic Descent Dynamics Walid Krichene, Peter L. Bartlett
- Kernel functions based on triplet comparisons Matthäus Kleindessner, Ulrike von Luxburg
- An Error Detection and Correction Framework for Connectomics Jonathan Zung, Ignacio Tartavull, Kisuk Lee, H. Sebastian Seung
- Style Transfer from Non-Parallel Text by Cross-Alignment Tianxiao Shen, Tao Lei, Regina Barzilay, Tommi Jaakkola
- Cross-Spectral Factor Analysis Neil Gallagher, Kyle R. Ulrich, Austin Talbot, Kafui Dzirasa, Lawrence Carin, David E. Carlson
- Stochastic Submodular Maximization: The Case of Coverage Functions Mohammad Karimi, Mario Lucic, Hamed Hassani, Andreas Krause
- Affinity Clustering: Hierarchical Clustering at Scale Mohammadhossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, Vahab Mirrokni
- Unsupervised Transformation Learning via Convex Relaxations Tatsunori B. Hashimoto, Percy S. Liang, John C. Duchi
- A Sharp Error Analysis for the Fused Lasso, with Application to Approximate Changepoint Screening Kevin Lin, James L. Sharpnack, Alessandro Rinaldo, Ryan J. Tibshirani
- Linear Time Computation of Moments in Sum-Product Networks Han Zhao, Geoffrey J. Gordon
- A Meta-Learning Perspective on Cold-Start Recommendations for Items Manasi Vartak, Arvind Thiagarajan, Conrado Miranda, Jeshua Bratman, Hugo Larochelle
- Predicting Scene Parsing and Motion Dynamics in the Future Xiaojie Jin, Huaxin Xiao, Xiaohui Shen, Jimei Yang, Zhe Lin, Yunpeng Chen, Zequn Jie, Jiashi Feng, Shuicheng Yan
- Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference Geoffrey Roeder, Yuhuai Wu, David K. Duvenaud
- Efficient Approximation Algorithms for Strings Kernel Based Sequence Classification Muhammad Farhan, Juvaria Tariq, Arif Zaman, Mudassir Shabbir, Imdad Ullah Khan
- Kernel Feature Selection via Conditional Covariance Minimization Jianbo Chen, Mitchell Stern, Martin J. Wainwright, Michael I. Jordan
- Convergence of Gradient EM on Multi-component Mixture of Gaussians Bowei Yan, Mingzhang Yin, Purnamrita Sarkar
- Real Time Image Saliency for Black Box Classifiers Piotr Dabkowski, Yarin Gal
- Houdini: Fooling Deep Structured Visual and Speech Recognition Models with Adversarial Examples Moustapha M. Cisse, Yossi Adi, Natalia Neverova, Joseph Keshet
- Efficient and Flexible Inference for Stochastic Systems Stefan Bauer, Nico S. Gorbach, Djordje Miladinovic, Joachim M. Buhmann
- When Cyclic Coordinate Descent Outperforms Randomized Coordinate Descent Mert Gurbuzbalaban, Asuman Ozdaglar, Pablo A. Parrilo, Nuri Vanli
- Active Learning from Peers Keerthiram Murugesan, Jaime Carbonell
- Experimental Design for Learning Causal Graphs with Latent Variables Murat Kocaoglu, Karthikeyan Shanmugam, Elias Bareinboim
- Learning to Model the Tail Yu-Xiong Wang, Deva Ramanan, Martial Hebert
- Stochastic Mirror Descent in Variationally Coherent Optimization Problems Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen Boyd, Peter W. Glynn
- On Separability of Loss Functions, and Revisiting Discriminative Vs Generative Models Adarsh Prasad, Alexandru Niculescu-Mizil, Pradeep K. Ravikumar
- Maxing and Ranking with Few Assumptions Moein Falahatgar, Yi Hao, Alon Orlitsky, Venkatadheeraj Pichapati, Vaishakh Ravindrakumar
- On clustering network-valued data Soumendu Sundar Mukherjee, Purnamrita Sarkar, Lizhen Lin
- A General Framework for Robust Interactive Learning Ehsan Emamjomeh-Zadeh, David Kempe
- Multi-view Matrix Factorization for Linear Dynamical System Estimation Mahdi Karami, Martha White, Dale Schuurmans, Csaba Szepesvari