Stop Thinking, Just Do!

Sung-Soo Kim's Blog

AI for Neuroscience and Neuroscience for AI


15 September 2020

Article Source

AI for Neuroscience & Neuroscience for AI

  • Speaker: Irina Rish, Researcher, AI Science, IBM T.J. Watson Research Center
  • Presentation Slide: slideshare


AI and neuroscience share the same age-old goal: to understand the essence of intelligence. Thus, despite different tools used and different questions explored by those disciplines, both have a lot to learn from each other. In this talk, I will summarize some of our recent projects which explore both directions, AI for neuro and neuro for AI. AI for neuro involves using machine learning to recognize mental states and identify statistical biomarkers of various mental disorders from heterogeneous data (neuroimaging, wearables, speech), as well as applications of our recently proposed hashing-based representation learning to dialog generation in depression therapy. Neuro for AI implies drawing inspirations from neuroscience to develop better machine learning algorithms. In particular, I will focus on the continual (lifelong) learning objective, and discuss several examples of neuro-inspired approaches, including (1) neurogenetic online model adaptation in nonstationary environments, (2) more biologically plausible alternatives to backpropagation, e.g., local optimization for neural net learning via alternating minimization with auxiliary activation variables, and co-activation memory, (3) modeling reward-driven attention and attention-driven reward in contextual bandit setting, as well as (4) modeling and forecasting behavior of coupled nonlinear dynamical systems such as brain (from calcium imaging and fMRI) using a combination of analytical van der Pol model with LSTMs, especially in small-data regimes, where such hybrid approach outperforms both of its components used separately.

comments powered by Disqus