Stop Thinking, Just Do!

Sungsoo Kim's Blog

High Accuracy Protein Structure Prediction Using Deep Learning

tagsTags

3 December 2020


Article Source


High Accuracy Protein Structure Prediction Using Deep Learning

This is Biology’s AlexNet moment! DeepMind solves a 50-year old problem in Protein Folding Prediction. AlphaFold 2 improves over DeepMind’s 2018 AlphaFold system with a new architecture and massively outperforms all competition. In this Video, we take a look at how AlphaFold 1 works and what we can gather about AlphaFold 2 from the little information that’s out there.

Abstract

Proteins are essential to life, supporting practically all its functions. They are large complex molecules, made up of chains of amino acids, and what a protein does largely depends on its unique 3D structure. Figuring out what shapes proteins fold into is known as the “protein folding problem”, and has stood as a grand challenge in biology for the past 50 years. In a major scientific advance, the latest version of our AI system AlphaFold has been recognised as a solution to this grand challenge by the organisers of the biennial Critical Assessment of protein Structure Prediction (CASP). This breakthrough demonstrates the impact AI can have on scientific discovery and its potential to dramatically accelerate progress in some of the most fundamental fields that explain and shape our world.

Authors: John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Kathryn Tunyasuvunakool, Olaf Ronneberger, Russ Bates, Augustin Žídek, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Anna Potapenko, Andrew J Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Martin Steinegger, Michalina Pacholska, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu, Pushmeet Kohli, Demis Hassabis.


comments powered by Disqus