Stop Thinking, Just Do!

Sungsoo Kim's Blog

Geometric Deep Learning-Past, Present, And Future Optimization

tagsTags

7 October 2021


Article Source


Geometric Deep Learning-Past, Present, And Future Optimization

  • Seminar by Michael Bronstein at the UCL Centre for AI.
  • Recorded on the 3rd February 2021.

Abstract

Geometric deep learning has recently become one of the hottest topics in machine learning, with its particular instance, graph neural networks, being used in a broad spectrum of applications ranging from 3D computer vision and graphics to high energy physics and drug design. Despite the promise and a series of success stories of geometric deep learning methods, we have not witnessed so far anything close to the smashing success convolutional networks have had in computer vision. In this talk, I will outline my views on the possible reasons and how the field could progress in the next few years.

Bio

Michael Bronstein is a professor at Imperial College London, where he holds the Chair in Machine Learning and Pattern Recognition, and Head of Graph Learning Research at Twitter. He also heads ML research in Project CETI, a TED Audacious Prize-winning collaboration aimed at understanding the communication of sperm whales. Michael received his PhD from the Technion in 2007. He has held visiting appointments at Stanford, MIT, Harvard, and Tel Aviv University, and has also been affiliated with three Institutes for Advanced Study (at TU Munich as a Rudolf Diesel Fellow (2017-2019), at Harvard as a Radcliffe fellow (2017-2018), and at Princeton as a visitor (2020)). Michael is the recipient of five ERC grants, two Google Faculty Research Awards, and two Amazon AWS ML Research Awards. He is a Member of the Academia Europaea, Fellow of IEEE, IAPR, and ELLIS, ACM Distinguished Speaker, and World Economic Forum Young Scientist. In addition to his academic career, Michael is a serial entrepreneur and founder of multiple startup companies, including Novafora, Invision (acquired by Intel in 2012), Videocites, and Fabula AI (acquired by Twitter in 2019). He has previously served as Principal Engineer at Intel Perceptual Computing and was one of the key developers of the Intel RealSense technology.


comments powered by Disqus