Article Source
Spatial Data Science Methods for Improving Models
Abstract
Spatial data science uses many of the same techniques and algorithms as traditional data science, but the spatial component can add a large amount of additional information by combining with other sources at the same location (e.g., census, geolocated tweets), using realtime routing services, or even by using the spatial structure of the distribution of the data.
In this talk, I will present lessons learned on extracting more information from spatial data than is typically used in data science projects. I will do this by highlighting two tools we recently used for client projects (spatially-constrained clustering, probabilistic principal component analysis), and present about the structure of spatial data in general that can be readily added to models.
ABOUT THE SPEAKER
Andy Eschbacher is a senior data scientist at CARTO, where he integrates data science solutions into CARTO’s infrastructure, solves spatial data science problems for clients, and builds out tools to better enable people working at the intersection of data science and GIS.
ABOUT DATA COUNCIL
Data Council (https://www.datacouncil.ai/) is a community and conference series that provides data professionals with the learning and networking opportunities they need to grow their careers. Make sure to subscribe to our channel for more videos, including DC_THURS, our series of live online interviews with leading data professionals from top open source projects and startups.